Вход/Регистрация
Программирование на языке Ruby
вернуться

Фултон Хэл

Шрифт:

end

data = [1.1, 2.3, 3.3, 1.2, 4.5, 2.1, 6.6]

am = mean(data) # 3.014285714

hm = hmean(data) # 2.101997946

gm = gmean(data) # 2.508411474

Медианой набора данных называется значение, которое оказывается приблизительно в середине отсортированного набора (ниже приведен код для вычисления медианы). Примерно половина элементов набора меньше медианы, а другая половина — больше. Ясно, что такая статистика показательна не для всякого набора.

def median(x)

 sorted = x.sort

 mid = x.size/2

 sorted[mid]

end

data = [7,7,7,4,4,5,4,5,7,2,2,3,3,7,3,4]

puts median(data) # 4

Мода набора данных — это наиболее часто встречающееся в нем значение. Если такое значение единственно, набор называется унимодальным, в противном случае — мультимодальным. Мультимодальные наборы более сложны, здесь мы их рассматривать не будем. Интересующийся читатель может обобщить и улучшить приведенный ниже код:

def mode(x)

 f = {} # Таблица частот.

 fmax = 0 # Максимальная частота.

 m = nil # Мода.

 x.each do |v|

f[v] ||= 0

f[v] += 1

fmax,m = f[v], v if f[v] > fmax

 end

 return m

end

data = [7,7,7,4,4,5,4,5,7,2,2,3,3,7,3,4]

puts mode(data) # 7

5.26. Дисперсия и стандартное отклонение

Дисперсия — это мера «разброса» значений из набора. (Здесь мы не различаем смещенные и несмещенные оценки.) Стандартное отклонение, которое обычно обозначается буквой , равно квадратному корню из дисперсии.

Data = [2, 3, 2, 2, 3, 4, 5, 5, 4, 3, 4, 1, 2]

def variance(x)

 m = mean(x)

 sum = 0.0

 x.each {|v| sum += (v-m)**2 }

 sum/x.size

end

def sigma(x)

 Math.sqrt(variance(x))

end

puts variance(data) # 1.461538462

puts sigma(data) # 1.20894105

Отметим, что функция

variance
вызывает определенную выше функцию
mean
.

5.27. Вычисление коэффициента корреляции

Коэффициент корреляции — одна из самых простых и полезных статистических мер. Он измеряет «линейность» набора, состоящего из пар (x, у), и изменяется от -1.0 (полная отрицательная корреляция) до +1.0 (полная положительная корреляция).

Для вычисления воспользуемся функциями

mean
и
sigma
(стандартное отклонение), которые были определены в разделах 5.25 и 5.26. О смысле этого показателя можно прочитать в любом учебнике по математической статистике.

В следующем коде предполагается, что есть два массива чисел одинакового размера:

def correlate(x,y)

 sum = 0.0

 x.each_index do |i|

sum += x[i]*y[i]

 end

 xymean = sum/x.size.to_f

 xmean = mean(x)

 ymean = mean(y)

 sx = sigma(x)

 sy = sigma(y)

 (xymean-(xmean*ymean))/(sx*sy)

end

a = [3, 6, 9, 12, 15, 18, 21]

b = [1.1, 2.1, 3.4, 4.8, 5.6]

с = [1.9, 1.0, 3.9, 3.1, 6.9]

c1 = correlate(a,a) # 1.0

c2 = correlate(a,a.reverse) # -1.0

c3 = correlate(b,c) # 0.8221970228

Приведенная ниже версия отличается лишь тем, что работает с одним массивом, каждый элемент которого — массив, содержащий пару (x, у):

  • Читать дальше
  • 1
  • ...
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: