Шрифт:
Разумеется, путешествие может оказаться неблизким. Кривая ln xповторно пересекает кривую x 0,3чуть к востоку от точки x = 379; она повторно пересекает кривую x 0,1только после того, как пройдет через точку x = 332 105; и она повторно пересекает кривую x 0,001только после прохождения точки x= 3 430 631 121 407 801. Если бы мы нарисовали график функции xв степени одна триллионная (т.е. x 0,000000000001), то она выглядела бы до безобразия плоской. Настолько, что ее нелегко было бы отличить от функции «остановки сердца», которая имеет высоту 1 над осью x, — ничего похожего на изящно восходящую кривую логарифмической функции. Логарифмическая кривая пересекла бы ее на малюсеньком расстоянии к востоку от e. И однако же степенная функция растет, хотя и чрезвычайно медленно, в то время как логарифмическая функция постепенно становится все более пологой. Рано или поздно они снова пересекутся, и тогда уже логарифмическая кривая навеки останется под кривой x 0,000000000001. Точка пересечения в этом случае наступит при таком большом аргументе, что я не могу его здесь записать: это число начинается как 44 556 503 846 304 183… и содержит еще 13 492 301 733 606 цифр.
Картина такова, как будто ln xстарается быть функцией x 0. Конечно, это не x 0: для любого положительного числа выражение x 0определяется равным числу 1, согласно 4-му правилу, и соответствующий график, как мы видели, — это «остановка сердца». Но хотя функция ln xи не есть x 0, она умудряется при достаточно больших xподнырнуть под функцию x со сколь угодно малым и оставаться там уже навсегда. [39]
39
Замечание: математики по соглашению используют букву (это эпсилон, пятая буква греческого алфавита) для обозначения «некоторого очень маленького числа».
В действительности дело обстоит даже еще более странным образом. Рассмотрим утверждение: «функция ln xрано или поздно будет расти медленнее, чем x 0,001, и x 0,000001, и x 0,000000001, и …» Представим себе, что мы возвели все это утверждениев некоторую степень — скажем, в сотую. (Это, надо признать, не очень строгая математическая операция, но она приводит к верному результату.) После применения 3-го правила утверждение будет выглядеть так: «функция (ln x) 100рано или поздно будет расти медленнее, чем x 0,1, и x 0,0001, и x 0,0000001, и …». Другими словами, если логарифм растет медленнее, чем любая степень буквы x, то это же верно и для любой степени функцииln x. Каждая из функций (ln x) 2, (ln x) 3, (ln x) 4, …, (ln x) 100, … растет медленнее, чем любая степень x. Независимо оттого, сколь велико Nи сколь мало , график функции (ln x) N в конце концов поднырнет под график функции x и останется там, внизу.
Такое нелегко себе представить. Функции (ln x) N растут быстро — и даже оченьбыстро. И тем не менее, если на рисунке 5.3 отойти достаточно далеко на восток, то рано или поздно, при некотором впечатляюще большом аргументе, каждая из них опустится ниже кривой x 0,3, x 0,2, x 0,1и вообще любой кривой из этого семейства, какую вы только потрудитесь нарисовать. Придется отправиться на восток в окрестность точки x= 7,9414 x10 3959, прежде чем (ln x) 100опустится ниже, чем x 0,3; и однако же это случится.
Кое-что из сказанного понадобится нам прямо сейчас, а кое-что останется на потом. Но все сказанное важно для понимания Гипотезы Римана, и я призываю вас проконтролировать некоторые основные моменты — проверить, как вы их понимаете, прежде чем двигаться дальше. Для этого сгодится карманный калькулятор. Можете, например, найти ln 2 (он равен 0,693147…) и ln 3 (равный 1,098612…) и удостовериться, что при сложении их действительно получается ln 6 (равный 1,791759…). Но только обратите, пожалуйста, внимание, что (как я уже упоминал) прежде использовались логарифмы по основанию 10, так что клавиша «log» на многих карманных калькуляторах вычисляет именно десятичные логарифмы. Тот единственный логарифм, который нас здесь интересует, — логарифм по основанию e— на калькуляторе, как правило, вычисляется с помощью альтернативной клавиши, помеченной ln x. Вот эта клавиша вам и нужна. (Буква nуказывает на «натуральный» логарифм; логарифм по основанию eпо всем правилам называется «натуральный логарифм».)
Ну а теперь вернемся к базельской задаче.
Эйлерово решение базельской задачи прекрасно иллюстрирует сделанное в разделе I этой главы замечание, что поиск решений в замкнутом виде расширяет понимание, позволяя проникнуть в суть вещей. Эйлерово решение дало не только замкнутое выражение для ряда из обратных квадратов, но в качестве побочного продукта еще и замкнутые выражения для рядов
Когда Nравно двум, ряд сходится к 2/6, как уже было сказано; когда Nравно 4, ряд сходится к 4/90; когда Nравно 6, ряд сходится к 6/945 и т.д. Метод Эйлера дает ответ для каждого четного N.В более поздней публикации он сам добрался до N= 26, когда ряд сходится к числу 1 315 862 26/11 094 481 976 030 578 125.
А что, если Nнечетное? Полученный Эйлером результат ничего про это не говорит. Как не говорит и ни один другой результат, полученный за последующие 260 лет. Нет никаких идей относительно замкнутого выражения (если таковое вообще существует) ни для
40
Доказательство принадлежит греко-французскому математику Роже Апери, которому в тот момент исполнился 61 год — это по поводу мнения, что математики никогда ничего не создают после тридцатилетнего возраста. В честь этого достижения сумма — которая в действительности равна 1,2020569031595942854… — стала известна как «число Апери». Оно имеет некоторые приложения в теории чисел. Случайным образом выберем три положительных целых числа. Какова вероятность, что у них нет общего делителя? Ответ: около 83 процентов, точнее, 0,83190737258070746868… — число, обратное числу Апери.