Шрифт:
Некоторую ясность может внести график. На рисунке 5.4 показан график дзета-функции. Как видно, когда аргумент sприближается к 1 справа, значения функции убегают на бесконечность, а когда sсамо уходит на бесконечность далеко справа, функция все более и более приближается к 1. (Я пририсовал еще два пунктира: линию s = 1 и график постоянной функции.)
Рисунок 5.4.Дзета-функция для аргументов, превышающих 1.
На графике не показано ничего про дзета-функцию слева от линии s = 1. Это потому, что до сих пор мы предполагали, что sбольше единицы. А если меньше? Если, скажем, sравно нулю? Ну, тогда выражение (5.2) примет вид
Но согласно 4-му правилу эта сумма равна 1 + 1 + 1 + 1 + 1 + 1 + …, что довольно очевидным образом расходится. Возьмем сумму ста членов: она будет равна 100; тысячи — 1000. Сложение миллиона слагаемых дает значение 1000 000. Да, ряд расходится.
С отрицательными числами дело обстоит еще хуже. Каково значение выражения (5.2) , если sравно -1? Из 5-го правила следует, что 2 – 1— это просто 1/ 2, 3 – 1— просто 1/ 3и т.д. Поскольку 1: 1/ 2есть просто 2, 1: 1/ 3— просто 3 и т.д., наш ряд принимает вид 1 + 2 + 3 + 4 + 5 + …, что определенно расходится. А как насчет s= 1/ 2? Поскольку 2 1/2— это просто 2 и т.д., ряд принимает вид
Поскольку квадратный корень из любого целого числа меньше самого числа, каждый член этого ряда [41] больше, чем соответствующий член ряда 1 + 1/ 2+ 1/ 3+ 1/ 4+ 1/ 5+ 1/ 6+ 1/ 7+ …. (Элементарная алгебра: если aменьше, чем b, то 1/aбольше, чем 1/b. Например, 2 меньше, чем 4, но 1/2 больше, чем 1/4). Указанный ряд расходится, а значит, интересующий нас ряд также расходится. Ну и правда, если вы потрудитесь вычислить суммы, то окажется, что первые десять членов суммируются к 5,020997899…, первые сто — к 18,589603824…, первые тысяча — к 61,801008765…, а первые десять тысяч — к 198,544645449… и т.д.
41
Очевидно, кроме первого. Читатель, вознамерившийся тем или иным способом проверять утверждения автора, должен делать скидку на подобные, как часто горят математики, «вольности речи». В серьезных математических статьях их, как правило, не меньше, чем в данной книге. (Примеч. перев.)
Похоже, что на графике изображено все, что можно показать про дзета-функцию Римана. Кроме этого, ничего больше нет. Функция имеет значения, только когда sбольше единицы. Или, как мы теперь можем сказать с использованием должного профессионального термина, область определения дзета-функции составляют все числа, большие единицы. Верно? Нет!
Глава 6. Великое соединение
Китайское слово Тай-е буквально переводится как «самый дальний дедушка» (прадедушка). Такой титул присвоен в семье моей жены ее деду по отцовской линии. Когда мы ездили в Китай летом 2001 года, нашей первейшей обязанностью было навестить Тай-е. Семья бесконечно им гордится, ибо он дожил до 97 лет в добром здравии и с ясной головой. «Ему девяносто семь лет! — говорили мне все. — Вам непременно надо встретиться с ним!» Я и встретился с ним — бодрым, располагающим к себе Буддой в цветущем человеческом воплощении, с румяным лицом и по-прежнему острым умом. Однако вопрос о том, правда ли ему 97 лет, довольно интересен.
Тай-е родился на третий день двенадцатого лунного месяца лунного года и сыпо традиционному летосчислению, принятому в поднебесной. [42] По западному календарю это было 28 декабря 1905 года. Поскольку мой приезд пришелся на начало июля 2001 года, возраст Тай-е по современному западному исчислению в тот момент составлял 95 1/ 2лет и несколько дней. Так почему же все говорили, что ему 97 лет? Потому что по старому китайскому стилю, которого и придерживался Тай-е, возраст его при рождении составлял один год, и к этому добавлялся год всякий раз, как наступал Новый год по лунному календарю — каковой случился 24 января 1906 года по нашему календарю, через 27 дней после его рождения. Он не прожил еще и месяца в этом мире, а ему уже было два года! Таким образом, когда наступил лунный Новый год в 2001 году (что случилось также 24 января, хотя вообще-то лунный Новый год может выпасть на любую дату между 21 января и 20 февраля), Самый Дальний Дедушка отпраздновал свое 97-летие.
42
Речь идет о «шестидесятилетнем цикле» — системе, основанной на комбинации десятеричного и двенадцатеричного циклов. Десятеричный цикл называется «Небесные стволы», а двенадцатеричный — «Земные ветви». Система также известна как «гань чжи» — букв. «стволы и ветви». (Примеч. перев.)
В традиционной китайской системе подсчета возраста нет ничего неправильного. Вы появляетесь в этом мире в такой-то день. Этот день является частью определенного года. Ясно, что этот год — ваш первый год. Если спустя 28 дней наступает следующий год — отлично, он будет вашим вторым годом. Все это вполне осмысленно. Единственная причина, по которой такая система выглядит странно, состоит в том, что современные люди (в Китае в той же степени, что и на Западе) привыкли при подсчете лет оперировать временем как чем-то таким, что можно измерить.Но когда Тай-е был молодым, китайцы воспринимали возраст человека как нечто, подлежащее счету.
Такое различие между числами для счета и числами для измерения глубоко проникло в людскую речь и само мышление. Похоже на то, что мы одной частью своей головы воспринимаем мир составленным из четко отделенных друг от друга твердых объектов, которым можно присвоить инвентарные номера, а другой частью видим мир в виде совокупности материалов, тканей и субстанций, которые надлежит делить на единицы и измерять. Параллельное осмысление обеих концепций дается нелегко. Мой шестилетний сын до сих пор путает слова для обозначения числа и количества, «many» и «much». После рождественских праздников он спросил у своего друга: «How much presents did you get?» [43]
43
Что-то вроде «Сколько подарка ты получил?». Невозможность адекватного перевода попытаемся компенсировать следующей историей: когда сыну переводчика этой книги тоже было около 6 лет, он часто спрашивал «Сколько много?» вместо простого «сколько», а как-то раз, выучив в походе, что палатки бывают одноместные, двухместные и т.д., спросил: «Эта палатка какаяместная?» (Примеч. перев.)