Вход/Регистрация
Пятьсот двадцать головоломок
вернуться

Дьюдени Генри Эрнест

Шрифт:

169. На нечетной стороне улицы номер дома равен 239, а всего на ней расположено 169 домов. На четной стороне улицы номер дома равен 408, а всего на ней расположено 288 домов.

В первом случае мы ищем решение в целых числах уравнения 2 x 2– 1 = y 2. Получаем следующие ответы:

Число Номер
домов x дома y
1 1
5 7
29 41
169 239
985 1393

и т. д.

Во втором случае мы ищем решение в целых числах уравнения 2( x 2+ x) = y 2. Получаем следующее:

Число Номер
домов x дома y
1 2
8 12
49 70
288 408
1681 2378

и т. д.

Эти два случая, равно как и предыдущие две головоломки, похожи друг на друга и используют хорошо известное уравнение Пелля.

170. Ошибка Хильды состояла в том, что заданное число она умножила не на 409, а на 49. Разделив величину от полученной погрешности на разность этих чисел, получим требуемое число 912.

171. Семнадцать лошадей требовалось поделить в пропорциях: 1/2 , 1/3 ,

. Это не означает, что сыновья должны получить такие доли от числа 17. Пропорции можно записать также в виде
,
и
. так что сыновья получат соответственно по 9, 6 и 2 лошади каждый и завещание будет строго соблюдено. Следовательно, нелепый старый метод, о котором упомянул Проджерс, случайно приводит к правильному решению.

Один читатель прислал мне следующее хитроумное решение:

172. Перечислим шесть прямоугольных треугольников, имеющих одинаковый, наименьший из возможных (720), периметр: 180, 240, 300; 120, 288, 312; 144, 270, 306; 72, 320, 328; 45, 336, 339; 80, 315, 325.

173. Запишем следующую последовательность чисел, впервые исследованную Леонардо Фибоначчи (родился в 1175 г.), который практически ввел в европейский обиход привычные нам арабские цифры:

Каждое последующее число равно сумме двух предыдущих. Сумма всех чисел, от первого до данного на 1 меньше числа, идущего через один после данного. Если удвоить любой член последовательности и прибавить к нему предыдущий, то получится член, который следует через один после данного. Далее, в первый год приплод будет составлять 0 телок, во второй 1, на третий 1, на четвертый 2 и т. д. При этом как раз и получатся члены данной последовательности. Двадцать пятый член равен 46 386, и если мы сложим все 25 членов, то получим правильный ответ 121 392. Но на самом деле нет необходимости выполнять это сложение. Найдя, двадцать четвертый и двадцать пятый члены, мы просто скажем, что 46 368, умноженное на 2, плюс 28 657 равно 121 393, и вычтем затем 1.

174. Взяв любое число, а потом другое, равное 1 плюс дробь, у которой в числителе стоит 1, а в знаменателе число, на 1 меньшее данного, мы получим пару чисел, дающих в сумме и в произведении одно и то же. Вот несколько примеров: 3 и 1 1/2 , 4 и 1 1/3 , 5 и 1 1/4 и т. д. Следовательно, получив 987 654 321, я немедленно написал 1

. Сумма и произведение равны в этом случае 987 654 322
.

Пару 2 и 2 рассматривают как исключение потому, что знаменатель в этом случае равен 1, а второе число тоже оказывается целым 1

= 2. Но можно заметить, что и этот случай подчиняется общему правилу. Число может оказаться как целым, так и дробным, а в условии не говорится, что мы должны найти обязательно целое число, поскольку тогда единственным решением действительно был бы случай 2 и 2. Разумеется, допускаются и десятичные дроби, как, например, 6 и 1,2; 11 и 1,1; 26 и 1,04.

Итак, соответствующее число, парное к n, имеет вид

175. Наименьшее возможное решение имеет вид

176. 1) 6 м; 2) приблизительно 1,57 м; 3)

м.

177. При делении данных чисел на искомое получаются одинаковые остатки. Следовательно, если мы вычтем, как показано ниже, одно число из другого, то разность разделится на искомое число без остатка.

Простые делители числа 28 203 равны 3, 7, 17, 79, а 214 406 — 2, 23, 59, 79. Единственный общий делитель двух разностей равен 79. Следовательно, искомое число равно 79, а общий остаток — 51. Просто, не правда ли?

178. Запишем подряд остатки от деления чисел, стоящих в первом столбце, на 2. Получится 1000011, или, если записать в обратном порядке, 1100001. Но последнее число равно 97 в двоичной системе счисления, то есть 1 + 2 5+ 2 6. Сложив числа, стоящие во втором столбце против остатков, равных 1, мы получим 23 x 1 + 23 x 2 5+ 23 x 2 6= 2231. Теперь уже ясно, почему получается верный ответ: просто мы действуем в двоичной системе.

  • Читать дальше
  • 1
  • ...
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: