Шрифт:
223. Год 1927:
224. Офицер на складе должен выдавать требуемое число снарядов ящиками по 18 снарядов до тех пор, пока не останется число снарядов, кратное 5. Если число снарядов не равно 5, 10 или 25, то остальные снаряды нужно выдавать ящиками по 15 и 20 снарядов. Наибольшее число снарядов, для которого система оказывается негодной, равно 72 плюс 25, то есть 97. Если число снарядов на складе больше, например равно 133, причем 108 снарядов упакованы в 6 ящиков по 18 снарядов в каждом, то офицер должен выдать лишь 1 ящик с 18 снарядами, а оставшиеся 115 снарядов переложить в 1 ящик, вмещающий 15 снарядов, и 5 ящиков, содержащих по 20 снарядов каждый. Если на складе имеется 97 снарядов, то, лишь выдав 72 снаряда, офицер получит остаток, кратный 5, то есть 25 снарядов.
225. Сначала было 7890 саженцев, из которых получился квадрат 88 x 88, и осталось лишних 146 деревьев. Купив еще 31 дерево, садовник смог увеличить квадрат до 89 x 89, а деревьев в саду стало 7921.
226. Наименьшее число кубиков в коробке 1344. Строя рамку вокруг пустого квадрата 34 x 34, первая девочка составила квадрат 50 x 50, вторая — квадрат 62 x 62 и третья — квадрат 72 x 72 с четырьмя лишними кубиками по углам.
227. Стороны треугольника равны 13, 14 и 15, причем основание равно 14, высота 12 и площадь 84. Существует бесконечно много рациональных треугольников, стороны которых выражаются последовательными целыми числами, как, например, 3, 4 и 5 или 13, 14 и 15, но только в одном из них высота удовлетворяет нашим условиям.
Треугольниками, у которых стороны выражаются тремя последовательными целыми числами, а площадь — целым числом, являются следующие:
Их можно найти очень просто:
или в общем виде U n = 4 U n– 1– U n– 2. Существует и другой способ построения треугольников. Найдите xтакое, чтобы 3( x 2– 1) было точным квадратом. Ему будет соответствовать треугольник со сторонами 2 x, 2 x+ 1, 2 x– 1.
228. Так как корова и коза в день съедают
229. Всего в альбоме было 2519 марок.
230. Существуют два решения, не превосходящие десяти: 3 и 5, 7 и 8.
Общее решение получается следующим образом. Обозначив числа через aи b, получим
Следовательно,
откуда
где mможет быть любым целым числом, большим 1, и aвыбирается так, чтобы число bбыло целым. В общем виде
231. Четырежды 2 плюс 20 равно 28. Четыре дрозда (
232.
233. В XX веке существует 215 дат с указанным свойством, если включать случаи вроде
234. Чтобы умножить 993 на 879, нужно действовать так. Вычесть 7 из 879 и прибавить к 993. При этом получаются два числа, 872 и 1000, произведение которых равно 872 000. 993 - 872 = 121. Если 121 умножить на 7, то получится 847. Сложив эти два результата, мы найдем верный ответ: 872 847 [38] .
235. Искомое число равно 987 654 321, что при умножении на 18 дает 17 777 777 778 с 1 и 8 соответственно в начале и в конце. То же справедливо и для других сомножителей, за исключением 90, когда мы получаем 88 888 888 890 с 90 на конце.
38
Выбрав a= 879, b= 993 и c= 7, мы и получим правило, по которому действует автор. — Прим. перев.
[Автор не заметил таких чисел, как 1001, 10 101 и 100 101, составленных из 0 и 1, с 1 на концах и не содержащих двух идущих подряд 1, каждое из которых также является решением задачи. — М. Г.]
236. Основная трудность заключается в том, чтобы правильно начать, и здесь можно предложить следующий метод. Из номеров по горизонтали наиболее обещающим выглядит номер 18. Тремя одинаковыми цифрами могут быть 111, 222, 333 и т. д. Номер 26 по вертикали равен квадрату номера 18 по горизонтали. Следовательно, номер 18 по горизонтали равен либо 111, либо 222, поскольку квадраты чисел 333, 444 и т. д. содержат более пяти цифр. Из номера 34 по горизонтали мы узнаем, что средняя цифра номера 26 по вертикали равна 3, отсюда число, стоящее под номером 26 по вертикали, есть квадрат числа 111, или 12 321.