Шрифт:
306. Высота шеста над землей составляла 50 м. В первом случае он сломался в 29 м, а во втором случае в 34 м от верхушки.
307. Длина свободно висящей веревки равна 3 м 85 1/2 см.
308. Разумеется, прямая ACне является наибыстрейшим путем. Быстрее будет доехать от Aдо Eи далее прямо до C. Путь, требующий наименьшей затраты времени, показан на рисунке пунктирной линией от Aдо G(ровно 1 км от E) и затем прямо до C.
Необходимо, чтобы синус угла FGCбыл в два раза больше синуса угла AGH, В первом случае синус равен 6/
309. Как видно из рисунка, головоломка невероятно проста, если знаешь, как к ней подступиться! И все же у меня нет ни малейшего сомнения, что для многих читателей она оказалась крепким орешком. Можно заметить, что каждая спичка, несомненно, касается всех остальных.
[Можно увеличить число спичек до семи, и головоломка остается все еще разрешимой. — М. Г.]
310. У посылки максимальных размеров суммарная длина веревки, идущей в длину, должна быть равна суммарной длине веревки, идущей в ширину (и суммарной длине веревки, идущей в высоту). Если это известно или читатель самостоятельно разобрался и понял, в чем дело, то остальное рассчитать очень просто. Действительно, мы знаем, что веревка 2 раза проходит в длину, А в ширину и 6 раз в высоту. Следовательно, разделив 1 м 20 см соответственно на 2, 4 и 6, мы получим 60, 30 и 20 см, а это и будет искомыми длиной, шириной и высотой посылки максимального размера.
Следующее общее решение принадлежит Александеру Фрейзеру. Пусть веревка aраз проходит вдоль ребра длиной x, bраз вдоль ребра длиной yи cраз вдоль ребра длиной z, и пусть длина всей веревки равна m.
Тогда ax+ by+ cz= m. Найдем максимум xyz.
Прежде всего найдем максимум площади xy.
Положим ax+ by= n, x= ( n– by) /a, xy= ( n/a) y– ( b/a) y 2, dxy/dy= n/a– (2 b/a) y= 0, тогда
Следовательно, axтакже равно n/2, ax= by. Аналогично ax= by= cz= m/3, откуда
В нашем случае a= 2, b= 4, c= 6, m= 360. Таким образом, x= 60, y= 30, z= 20:
311. Куб любого квадрата сам является квадратом. Например,
и т. д.
Нам было сказано, чтобы мы взглянули на рисунок. Если бы на возведение пьедестала израсходовали лишь один блок, то он целиком покрыл бы фундамент, а на рисунке видно, что это не так. Если бы в пьедестале и фундаменте содержалось по 64 блока, то сторона первого равнялась бы 4 м, а сторона квадрата 8 м. Достаточно беглого взгляда для того, чтобы отвергнуть и это предположение. Но предположение о пьедестале и фундаменте, состоящих из 729 блоков каждый, вполне согласуется с иллюстрацией, так как в этом случае сторона пьедестала (9 м) в три раза меньше стороны квадрата (27 м). Во всех остальных случаях фундамент оказался бы намного шире пьедестала, что противоречило бы иллюстрации.
312. Любопытный факт состоит в том, что куб может пройти сквозь другой куб с меньшим ребром. Допустим, мы расположили куб таким образом, что его диагональ ABоказалась перпендикулярной плоскости, на которой он стоит (см. рисунок слева). Тогда его проекцией будет правильный шестиугольник. На рисунке справа показана дырка, сквозь которую.может пройти куб с тем же ребром, что и у исходного. Однако легко заметить, что дырку можно немного увеличить так, чтобы сквозь нее прошел куб с большим ребром. Следовательно, я проделал дырку не в большем, как мог поспешно решить читатель, а в меньшем кубе! Поэтому больший куб, вполне очевидно, оказался тяжелее. Этого не могло бы произойти, если бы дырка была проделана в большем кубе.