Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

1.14. По условию CD = BC– AC (D — основание высоты). Однако BC и AC можно выразить через CD с помощью тригонометрических функций углов треугольника АВС. Это даст нам уравнение, связывающее углы треугольника АВС.

1.15. Если рассматривать длины сторон AC = b и BC = а, то все участвующие в задаче геометрические величины будут связаны с площадью треугольника ABC.

1.16. Чтобы геометрически связать окружность с центром О и окружность с центром О1, нужно провести отрезки СО и ВО (рис. I.1.16). Окружность О1 описана около треугольника СОВ. Длина хорды СВ известна. Следовательно, для того, чтобы найти радиус, достаточно определить угол СОВ.

1.17. Задачу удобно переформулировать иначе: через центр вписанной окружности проведем прямую, параллельную средней стороне треугольника, и докажем, что она пройдет через точку пересечения медиан, т. е. точка пересечения этой прямой с медианой, опущенной на меньшую сторону, делит медиану в отношении 2 : 1.

1.18. Воспользоваться методом сравнения площадей.

1.19. Точки A, О и L лежат на одной прямой — биссектрисе угла ВАС, аналогично точки В, О и K лежат на биссектрисе угла АВС. Прямая KL делит угол АСМ пополам (СМ — продолжение BC).

По условию A = 2С, а В = 4С (рисунок сделайте самостоятельно).

1.20. Так как сумма углов в треугольнике равна , то углы А, В и С нетрудно вычислить.

1.21. Сделать несложное дополнительное построение, чтобы получились подобные треугольники.

1.22. Поскольку отрезки, длины которых входят в правую часть равенства, лежат на одной прямой, нужно выразить длины всех отрезков на той же прямой. Тем самым мы «спрямим» записанное соотношение и сделаем его доказательство простым.

1.23. В формулу входят отношения. Поэтому целесообразно сделать дополнительные построения, в результате которых получатся подобные треугольники.

1.24. При построении, описанном в условии, возникают подобные треугольники. Нужно с их помощью заменить стоящие в левой части отношения новыми отношениями с тем, чтобы в знаменателе была одна и та же сторона треугольника, а в числителе — отрезки этой стороны. (!)

1.25. Положение прямой, проходящей через точку О, можно определить с помощью угла , который эта прямая составляет с некоторым фиксированным радиусом описанной окружности. Нужно доказать, что величина, о которой говорится в условии, не зависит от .

1.26. Чтобы ответить на вопрос задачи, нужно знать стороны данного треугольника и радиус описанной около него окружности. С вычисления этих величин и следует начать решение задачи.

1.27. Связать углы треугольника и его стороны можно либо с помощью теоремы синусов, либо с помощью теоремы косинусов. Данное в условии соотношение между сторонами треугольника подсказывает, что теорема косинусов удобнее.

1.28. Если отрезки ОА, ОВ и ОС, входящие в данное соотношение ОА^2 = ОВ · ОС, выразить через радиус r вписанной окружности и углы треугольника, то должно получиться соотношение между тригонометрическими функциями этих углов, не содержащее r. (!)

1.29. Применить формулу, выражающую площадь треугольника через две стороны и синус угла, и теорему косинусов. (!)

1.30. Чтобы доказать равенство двух отрезков, о которых идет речь в условии, можно ввести элементы, определяющие треугольник, и выразить через них эти отрезки. То же самое можно сделать геометрически: четырехугольник О1ЕDО3 (рис. I.1.30), построенный на отрезке О1О3, таков, что каждая из трех его остальных сторон равна половине соответствующей стороны треугольника. Остается построить такой же четырехугольник на отрезке ВО2.

1.31. Площадь треугольника АFМ (рис. I.1.31) в восемь раз меньше площади треугольника АВС, так как АF = 1/2 AB, а высота треугольника АFМ в четыре раза меньше высоты треугольника АВС (докажите). Если рассматривать AM и АD как основания треугольников АFМ и АВD, то соответствующие высоты этих треугольников относятся как 1 : 2. Выяснив, в каком отношении точка M делит отрезок АD, мы решим задачу.

  • Читать дальше
  • 1
  • ...
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: