Ваховский Евгений Борисович
Шрифт:
1.49. Если в треугольнике АВС провести высоту АN (рис. I.1.49), то искомая площадь будет равна 1/2 АN · BC. Соединив точки M и С, разобьем треугольник АВС на равнобедренный треугольник МСВ и треугольник АМС, у которого угол АМС легко выразить через .
1.50. Задача вычислительная. Нужно воспользоваться формулой Герона и выражением радиуса R через стороны треугольника и его площадь S, т. е. R = abc/4S . Стороны треугольника удобно обозначить: а, а– d, а + d.
1.51. Проведите через точки P и Q прямые, параллельные AC. Первая будет средней линией треугольника АВС, вторая — средней линией треугольника с вершиной В, которому первая средняя линия служит основанием.
1.52. Соединим точки P и T. Данный треугольник разбивается на пять. Пусть QT = m, TL = n, QN = RL = а. Чтобы использовать условия задачи, можно записать соотношения площадей различных треугольников, образовавшихся из данного треугольника PQR.
1.53. Хорда MN — сторона правильного шестиугольника, вписанного в первую окружность, так как опирающийся на MN центральный угол МО1N = 60°. Чем является MN для второй окружности?
1.54. Для вписанного в окружность четырехугольника воспользоваться свойством, в силу которого сумма противоположных его углов равна 180°. Удобно обозначить стороны четырехугольника через а, b, с, d, начиная со стороны AB, а опирающиеся на них углы (проведите диагонали) через , , , .
K главе 2
2.1. Предположим, что где-то построен мост (рис. I.2.1). В этом случае путь из А в В будет ломаной, состоящей из трех звеньев. Среднее звено всегда остается неизвестным по длине и направлению. Следовательно, нужно «спрямить» первое и третье звенья.
2.2. Из точки А отрезки МР и РN видны под углом 30° каждый. Следовательно, построить точку А можно как пересечение двух сегментов, вмещающих угол в 30°.
2.3. Пусть треугольник АВС искомый (рис. I.2.3). Чтобы на чертеже появился угол , отразим треугольник АВС от вертикальной оси, проходящей через середину BC. Получим треугольник СА1А, в котором А1СА = .
2.4. В любом треугольнике АВС центр описанной окружности лежит на пересечении перпендикуляров, восставленных из середин сторон. Этот факт можно использовать для того, чтобы связать данные элементы треугольника: b и mс.
2.5. Точки О (центр вписанной окружности) и О1 (центр вневписанной окружности) лежат на биссектрисе угла А треугольника АВС (рис. I.2.5). Отрезки ОС и О1С, ОВ и О1В взаимно перпендикулярны как биссектрисы смежных углов. Поэтому точки В, О, С, О1 лежат на одной окружности с центром в точке Q.
2.6. Применить метод подобия, выбрав за центр подобия одну из вершин треугольника, А или С.
2.7. Если прямую FЕ (рис. I.2.7) вращать около точки M, то площади треугольников ОМF и ОМЕ будут изменяться так, что с увеличением одной уменьшается другая. Это должно навести на мысль рассмотреть некоторое среднее положение.
2.8. Чтобы использовать данный в условии периметр треугольника, нужно осуществить «спрямление», т. е. рассмотреть треугольник, который получается из искомого, если отложить на BC отрезки А1В и СА2, равные AB и AC соответственно, так, как это показано на рис. I.2.8.
2.9. Чтобы подойти к решению задачи, нужно построить из отрезков АР, ВР и СР ломаную с закрепленными концами и посмотреть, когда эта ломаная будет выпрямляться.