Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

Способ 2. Связать отрезки l, m и n удобно с помощью теоремы косинусов для каждого из трех треугольников АОВ, АОС и ВОС, сумма площадей которых равна площади треугольника АВС.

1.14. Остается использовать условие, что А– В = . С помощью формул преобразования произведения тригонометрических функций в сумму придем к тригонометрическому уравнению относительно A + B/2.

1.15. Площадь треугольника АВС, которую мы временно обозначим через S, равна

S = 1/2 aha = 1/2 bhb.

Кроме того, S выражается через а, b, l и sin C/2 , если треугольник АВС разделить биссектрисой СD на два треугольника.

1.16. Для нахождения угла СОВ следует использовать тот факт, что центр вписанной в треугольник окружности лежит на пересечении биссектрис. Для этого нужно выразить СОВ через сумму ОСВ + ОВС.

1.17. Так как по условию стороны треугольника образуют арифметическую прогрессию, то обозначим их длины через а, а + d, а + 2d и постараемся связать радиус вписанной окружности с длинами сторон. На рисунке треугольник удобно расположить так, чтобы средняя по длине сторона оказалась его основанием.

С помощью сравнения площадей легко выразить высоту треугольника через радиус вписанной окружности. Этот факт будет полезен для исследования образовавшихся подобных треугольников.

1.18. Заметить, что проекция отрезка АО (О — центр вписанной окружности) на сторону b равна p– а.

1.19. Чтобы доказать, что треугольники АВС и OKL подобны, достаточно установить равенство их углов. Так как углы треугольника АВС легко выражаются через угол С, то и углы треугольника OLK тоже следует постараться выразить через тот же угол С. Начать удобно с угла KOL, который равен углу АОВ.

1.20. Чтобы связать стороны треугольника и его углы, удобно воспользоваться теоремой синусов; так как соотношение, которое нужно доказать, однородно, линейные элементы сократятся.

1.21. Если через одну из вершин треугольника АВС провести отрезок, параллельный противоположной стороне треугольника до пересечения с данной в условии прямой, то получим нужные подобные треугольники.

1.22. Если в треугольнике АВС провести высоту АЕ, то получим три прямоугольных треугольника; с помощью теоремы Пифагора АВ^2, АС^2 и АD^2 можно выразить через АЕ и отрезки, лежащие на BC.

1.23. Если AC — основание треугольника, то дополнительное построение удобно выполнить так: через вершины А и С провести прямые, параллельные ВQ, а отрезки СR и АР продолжить до пересечения с этими прямыми. В результате возникнут все необходимые для решения подобные треугольники.

1.25. В качестве неподвижного радиуса удобно выбрать АО. Сумму квадратов расстояний выразить через радиус R описанной около треугольника окружности и угол .

1.26. Две стороны треугольника и угол между ними известны. Третью сторону можно найти по теореме косинусов, а радиус описанной окружности — по теореме синусов.

1.27. Выразить cos А и cos С через стороны треугольника и сравнить cos 2С с cos А, имея в виду данное в условии соотношение: а^2 = с(b + с).

1.30. Сделать это можно так: ВЕ будет стороной, соответствующей О1Е, а через точку E нужно будет провести прямую, параллельную KO2, и отложить на ней отрезок, равный KO2.

1.31. Достроить треугольник АВС до параллелограмма так, чтобы сторона AB была диагональю этого параллелограмма, а через вершину В провести ВD1 АD. Рассматривая треугольник МDС и подобный ему треугольник с вершинами в точках В и С, найдем отношение, в котором точка M делит отрезок АD.

  • Читать дальше
  • 1
  • ...
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: