Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

2.9. Если взять любой из треугольников, образовавшихся при вершине P (рис. 11.2.9), то начало для построения ломаной, составленной из АР, ВР и СР, уже есть. Однако просто пристроить недостающее звено нельзя, так как последняя вершина такой ломаной не будет закреплена, а потому не позволит решить задачу.

На помощь приходит свойство правильного треугольника: поверните треугольник АВР на 60° вокруг точки А и вы получите ломаную В1Р1РС, равную сумме отрезков АР, ВР и СР. При этом точка В1 однозначно определяется видом треугольника АВС.

2.10. Чтобы построить точку С, достаточно знать длину отрезка СЕ или длину отрезка DЕ = СЕ– l. Задача сводится к вычислению и построению отрезка DЕ.

2.11. Вершина С лежит, с одной стороны, на окружности радиусом b с центром в точке В, а с другой стороны, на прямой, параллельной АD, которую нетрудно построить.

2.12. Остается построить треугольник ОМС по трем сторонам: СМ = АО = R, ОС = 2R, ОМ известно, так как точки О и M даны.

2.13. Треугольник ОО1E, где О1E AB, а точка E лежит на ОС, легко построить, зная О1Е = a/2.

2.14. Точки M и N лежат на окружности, концентрической данной.

2.15. Отрезок РQ перенести параллельно в отрезок В1В и рассмотреть угол АРВ1.

2.16. Чтобы построить параллелограмм FBDE на его диагонали, нужно найти еще одну связь между вершинами F и D и данными элементами. Заметим, что точка А еще никак не участвовала в построениях. Если соединить ее с точкой F то получим угол АFЕ, который известен, так как выражается через угол АСВ.

2.18. Воспользоваться тем, что высоты в треугольнике пересекаются в одной точке.

2.19. Провести прямую через точку С и данную точку M и найти точку ее пересечения с данным диаметром или его продолжением.

2.20. Если одну из точек, например А, отразим симметрично от прямой l (рис. II.2.20), то получим точку А1 причем решение аналогичной задачи для точек A1 и В совпадет с решением первоначальной задачи. Легко заметить, что величина |A1C– BC| не может превзойти длины отрезка A1B. Но может ли она ее достигнуть?

2.21. Такая связь есть (рис. II.2.21). Точки E и F пересечения диагонали квадрата с окружностями, построенными на противоположных сторонах данного четырехугольника как на диаметрах, делят соответствующие дуги пополам.

2.22. Выбрав произвольно длину отрезка 1, построим соответствующий ему отрезок длины 7. Теперь, зная отрезки 1 и 7, найдем отрезок x = 7, воспользовавшись подобием соответствующих треугольников: 7 : x = 1 : 7 .

2.23. Если на одном луче от вершины О угла отложены отрезки ОА = а и ОВ = b (b > а), на другом его луче отрезок ОС = с (рис. II.2.23), и через точку В проведена прямая BD, параллельная AC и пересекающая ОС в точке D, то отрезок OD = d = bc/а.

K главе 3 

3.1. Выразить длину отрезка ОС через ОА.

3.2. Данный треугольник и все треугольники, образовавшиеся при его проецировании на плоскость P, определены с точностью до подобия. Поэтому соотношение между углами можно получить, введя в рассмотрение некоторый линейный элемент, зависящий от всех участвующих в задаче углов. (!!)

  • Читать дальше
  • 1
  • ...
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: