Вход/Регистрация
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
вернуться

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

N = общее число точек данных;

X. = значение, соответствующее точке i;

А = среднее арифметическое значений точек данных;

ABS = функция абсолютного значения.

Уравнение (3.06) дает нам совокупное среднее абсолютное отклонение. Вам сле­дует знать, что можно рассчитать среднее абсолютное отклонение по выборке. Для расчета среднего абсолютного отклонения выборки замените 1 / N в уравне­нии (3.06) на 1 / (N - 1). Используйте эту версию, когда расчеты ведутся не по всей совокупности данных, а по некоторой выборке.

Самыми распространенными величинами для измерения разброса являются дисперсия и стандартное отклонение. Как и в случае со средним абсолютным от­клонением, их можно рассчитать для всей совокупности и для выборки. Далее показана версия для всей совокупности данных, которую можно легко переделать в выборочную версию, заменив l/NHal/(N-l). Дисперсия (variance) чем-то напоминает среднее абсолютное отклонение, но при расчете дисперсии каждая разность значения точки данных и среднего значе­ния возводится в квадрат. В результате, нам не надо брать абсолютное значение каждой разности, так как мы автоматически получаем положительный результат, независимо от того, была эта разность отрицательной или положительной. Кроме того, так как в квадрат возводится каждая из этих величин, крайние выпадающие значения оказывают большее влияние на дисперсию, а не на среднее абсолютное отклонение. В математических терминах:

где V = дисперсия;

N = общее число точек данных;

X. = значение, соответствующее точке i;

А = среднее арифметическое значений точек данных.

Стандартное отклонение (standard deviation) тесно связано с дисперсией (и, следо­вательно, со средним абсолютным отклонением). Стандартное отклонение явля­ется квадратным корнем дисперсии.

Третий момент распределения называется асимметрией (skewness), и он опи­сывает асимметричность распределения относительно среднего значения (рису­нок 3-2). В то время как первые два момента распределения имеют размерные ве­личины (то есть те же единицы измерения, что и измеряемые параметры), асим­метрия определяется таким способом, что получается безразмерной. Это просто число, которое описывает форму распределения.

Положительное значение асимметрии означает, что хвосты больше с положи­тельной стороны распределения, и наоборот. Совершенно симметричное распре­деление имеет нулевую асимметрию.

Рисунок 3-2 Асимметрия

Рисунок 3-3 Асимметричное распределение

В симметричном распределении среднее, медиана и мода имеют одинаковое значе­ние. Однако когда распределение имеет ненулевое значение асимметрии, оно может принять вид, показанный на рисунке 3-3. Для асимметричного распределения (лю­бого распределения с ненулевой асимметрией) верно равенство:

(3.08) Среднее - Мода = 3 * (Среднее - Медиана)

Есть много способов для расчета асимметрии, и они часто дают различные отве­ты. Ниже мы рассмотрим несколько вариантов:

(3.09) S == (Среднее - Мода) / Стандартное отклонение

(3.10) S = (3 * (Среднее - Медиана)) / Стандартное отклонение

Уравнения (3.09) и (3.10) дают нам первый и второй коэффициенты асимметрии Пирсона. Асимметрия также часто определяется следующим образом:

где S = асимметрия;

N = общее число точек данных;

Х = значение, соответствующее точке i;

А = среднее арифметическое значений точек данных;

D = стандартное отклонение значений точек данных.

И наконец, четвертый момент распределения, эксцесс (kurtosis) (см. рисунок 3-4), измеряет, насколько у распределения плоская или острая форма (по сравнению с нормальным распределением). Как и асимметрия, это безразмерная величина. Кривая, менее остроконечная, чем нормальная, имеет эксцесс отрицательный, а кривая, более остроконечная, чем нормальная, имеет эксцесс положительный. Когда пик кривой такой же, как и у кривой нормального распределения, эксцесс равен нулю, и мы будем говорить, что это распределение с нормальным эксцессом.

Как и предыдущие моменты, эксцесс имеет несколько способов расчета. Наи­более распространенными являются:

где К = эксцесс;

Q == семи-интерквартильная широта;

Р = широта перцентиля 10-90.

(3.13) К = (1 / N ( (((X - Аi) / D)^ 4))) - 3,

где К = эксцесс;

N = общее число точек данных;

Х = значение, соответствующее точке i;

А = среднее арифметическое значений точек данных;

D = стандартное отклонение значений точек данных.

Рисунок 3-4 Эксцесс

Наконец, необходимо отметить, что «теория», связанная с моментами распределе­ния, намного серьезнее, чем то, что представлено здесь. Для более глубокого пони­мания вам следует просмотреть книги по статистике, упомянутые в списке реко­мендованной литературы. Для наших задач изложенного выше вполне достаточно.

До настоящего момента рассматривалось распределение данных в общем виде. Теперь мы изучим нормальное распределение.

  • Читать дальше
  • 1
  • ...
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: