Вход/Регистрация
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
вернуться

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

U = среднее значение данных;

S = стандартное отклонение данных;

Х = наблюдаемая точка данных;

ЕХР = экспоненциальная функция.

Уравнение (3.16) дает нам число стандартных единиц, которым соответствует точ­ка данных; другими словами, число стандартных отклонений, на которое точка данных смещена от среднего. Когда уравнение (3.16) равно 1, оно называется стандартным нормальным отклонением (standard normal deviate) от среднего значе­ния. Стандартное отклонение, или стандартная единица, иногда называется сиг­мой (sigma). Таким образом, когда говорят о событии, которое было «событием пяти сигма», то речь идет о событии, вероятность которого находится за предела­ми пяти стандартных отклонений.

Рисунок 3-7 показывает нормальную кривую, заданную предедущим уравне­нием. Отметьте, что высота стандартной нормальной кривой составляет 0,39894, поскольку из уравнения (3.15а) мы получаем:

Отметьте, что кривая непрерывна (в ней нет «разрывов»), когда она переходит из отрицательной области слева в положительную область справа. Отметьте также, что кривая симметрична: сторона справа от пика является зеркальным отражени­ем стороны слева. Предположим, у нас есть группа данных, где среднее равно 11, а стандартное отклонение равно 20. Чтобы увидеть, где точка данных будет отображена на кри­вой, рассчитаем ее в стандартных единицах. Предположим, что рассматриваемая точка данных имеет значение -9. Чтобы рассчитать число стандартных единиц, мы сначала должны вычесть среднее из этой точки данных: -9- 11 =-20

Затем надо разделить полученный результат на стандартное отклонение:

– 20/20=-1

Теперь мы можем сказать, что, когда точка данных равна -9, среднее равно 11, а стандартное отклонение составляет 20, число стандартных единиц равно -1. Други­ми словами, мы находимся на одно стандартное отклонение от пика кривой, и, так как это значение отрицательно, оно находится слева от пика. Чтобы увидеть, где это будет на самой кривой (то есть насколько высока кривая при одном стандартном отклонении слева от центра, или чему равно значение кривой на оси Y для значе­ния -1 на оси X), надо подставить полученное значение в уравнение (3.15а):

Таким образом, высота кривой при Х=-1 составляет 0,2419705705. Функция N'(Z) также часто выражается как:

и ATN = функция арктангенса;

U = среднее значение данных;

S = стандартное отклонение данных;

Х = наблюдаемая точка данных;

ЕХР = экспоненциальная функция.

Не искушенные в статистике люди часто находят концепцию стандартного отклоне­ния (или квадрата ее величины, дисперсии) трудной для представления. Среднее абсо­лютное отклонение (mean absolute deviation), которое можно преобразовать в стандар­тное отклонение, гораздо проще для понимания. Среднее абсолютное отклонение полностью отвечает своему названию: среднее данных вычитается из каждой точки данных, затем абсолютные значения каждой из этих разностей суммируются, и дан­ная сумма делится на число точек данных. В результате у вас получается среднее рас­стояние каждой точки данных до среднего значения. Преобразование среднего аб­солютного отклонения в стандартное отклонение, и наоборот, представлены далее:

где М = среднее абсолютное отклонение;

S = стандартное отклонение.

Можно сказать, что при нормальном распределении среднее абсолютное откло­нение равно стандартному отклонению, умноженному на 0,7979.

(3.18) S = М * 1 / 0,7978845609

=М* 1,253314137, где S = стандартное отклонение;

М = среднее абсолютное отклонение.

Мы можем также сказать, что при нормальном распределении стандартное отклонение равно среднему абсолютному отклонению, умноженному на 1,2533. Так как дисперсия всегда является стандартным отклонением в квад­рате (а стандартное отклонение является квадратным корнем дисперсии), мы можем задать преобразование между дисперсией и средним абсолютным от­клонением.

(3.19) М = V ^ (1/2) * ((2 / 3,1415926536)^ (1/2))

= V ^ (1/2)* 0,7978845609,

где М = среднее абсолютное отклонение;

V = дисперсия.

(3.20) V = (М * 1,253314137)^ 2,

где V =дисперсия;

М = среднее абсолютное отклонение.

Так как стандартное отклонение в стандартной нормальной кривой равно 1, мы можем сказать, что среднее абсолютное отклонение в стандартной нормальной кривой равно 0,7979. Более того, в колоколообразной кривой, подобной нормальной, семи-интер-квартильная широта равна приблизительно 2/3 стандартного отклонения, и поэто­му стандартное отклонение примерно в 1,5 раза больше семи-интерквартильной широты. Это справедливо для большинства колоколообразных распределений, а не только для нормальных, как и в случае с преобразованием среднего абсолютного отклонения в стандартное отклонение.

Нормальные вероятности

Теперь мы знаем, как преобразовывать наши необработанные данные в стан­дартные единицы и как построить кривую N'(Z) (т.е. как найти высоту кривой, или координату Y, для данной стандартной единицы), а также N'(X) (из уравнения (3.14), т.е. саму кривую без первоначального преобразования в стандар­тные единицы). Для практического использования нормального распределе­ния вероятности нам надо знать вероятность определенного результата. Это определяется не высотой кривой, а площадью под кривой. Эта площадь зада­ется интегралом функции N'(Z), которую мы до настоящего момента изучали. Теперь мы займемся N(Z), интегралом N'(Z), чтобы найти площадь под кри­вой (т.е. вероятности) [12] .

12

На самом деле, интеграл плотности нормального распределения вероятности нельзя

pассчитать точно, но его можно с большой степенью точности получить с помощью

уравнения (3.21).

где Y=1/(1+2316419*ABS(Z))

и ABSQ = функция абсолютного значения;

ЕХР = экспоненциальная функция.

При расчете вероятности мы всегда будем преобразовывать данные в стандарт­ные единицы. То есть вместо функции N(X) мы будем использовать функцию

N(Z), где:

(3.16) Z=(X-U)/S,

где U = среднее значение данных;

S = стандартное отклонение данных;

Х = наблюдаемая точка данных.

Теперь обратимся к уравнению (3.21). Допустим, нам надо знать, какова вероят­ность события, не превышающего +2 стандартных единицы (Z = +2).

  • Читать дальше
  • 1
  • ...
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: