Шрифт:
Y= 1/(1 +2316419*ABS(+2)) =1/1,4632838 =0,68339443311
(3.15a) N'(Z) = 0,398942 * ЕХР(-(+2^2/2))
= 0,398942 *ЕХР (-2)=0,398942*0,1353353=0,05399093525
Заметьте, мы можем найти высоту кривой при +2 стандартных единицах. Подставляя полученные значения вместо Y и N'(Z) в уравнение (3.21), мы можем получить вероятность события, не превышающего +2 стандартных единицы:
N(Z) = 1 - N'(Z) * ((1,330274429 * Y^ 5) -
– (1,821255978 * Y^4) + (1,781477937 * Y^ 3) -
– (0,356563782 * Y ^ 2) + (0,31938153 * Y))
= 1-0,05399093525* ((1,330274429* 0,68339443311^5)-
– (1,821255978 * 0,68339443311 ^ 4 + 1,781477937 * 0,68339443311^ 3) - - (0,356563782 * 0,68339443311 ^2) + 0,31938153 * 0,68339443311))
= 1 - 0,05399093525 * (1,330274429 * 0,1490587) -
– (1,821255978 * 0,2181151 + (1,781477937 * 0,3191643)-
– (0,356563782 * 0,467028 + 0,31938153 - 0,68339443311))
1- 0,05399093525 * (0,198288977 - 0,3972434298 + 0,5685841587 -
– 0,16652527+0,2182635596)
= 1 - 0,05399093525 * 0,4213679955 = 1 - 0,02275005216= 0,9772499478
Таким образом, можно ожидать, что 97,72% результатов в нормально распределенном случайном процессе не попадают за +2 стандартные единицы. Это изображено на рисунке 3-8.
Чтобы узнать, какова вероятность события, равного или превышающего заданное число стандартных единиц (в нашем случае +2), надо просто изменить уравнение (3.21) и не использовать условие «Если Z < 0, то N(Z) = 1 - N(Z)». Поэтому вторая с конца строка в последнем расчете изменится с
= 1 - 0,02275005216 на 0,02275005216
Таким образом, с вероятностью 2,275% событие в нормально распределенном случайном процессе будет равно или превышать +2 стандартные единицы. Это показано на рисунке 3-9.
Рисунок 3-8 Уравнение (3.21) для вероятности Z=+2
Рисунок 3-9 Устранение оговорки «Если Z < 0, то N(Z) = 1 - N(Z)» в уравнении (3.21)
До сих пор мы рассматривали площади под кривой 1-хвостых распределений вероятности. То есть до настоящего момента мы отвечали на вопрос: «Какова вероятность события, которое меньше (больше) заданного количества стандартных единиц от среднего?» Предположим, теперь нам надо ответить на такой вопрос: «Какова вероятность события, которое находится в интервале между определенным количеством стандартных единиц от среднего?» Другими словами, мы хотим знать, как подсчитать 2-хвостые вероятности. Посмотрим на рисунок 3-10. Он представляет вероятности события в интервале двух стандартных единиц от среднего. В отличие от рисунка 3-8 этот расчет вероятности не включает крайнюю область левого хвоста, область меньше -2 стандартных единиц. Для расчета вероятности нахождения в диапазоне Z стандартных единиц от среднего вы должны сначала рассчитать 1-хвостую вероятность абсолютного значения Z с помощью уравнения (3.21), а затем полученное значение подставить в уравнение (3.22), которое дает 2-хвостые вероятности (то есть вероятности нахождения в диапазоне ABS(Z) стандартных единиц от среднего):
(3.22) 2-хвостая вероятность =1-((1- N(ABS(Z))) * 2)
Если мы рассматриваем вероятности наступления события в диапазоне 2 стандартных отклонений (Z = 2), то из уравнения (3.21) найдем, что N(2) = 0,9772499478 и можно использовать полученное значение для уравнения (3.22):
2-хвостая вероятность =1-((1- 0,9772499478) * 2) =1-(0,02275005216*2) = 1 - 0,04550010432 = 0,9544998957
Таким образом, из этого уравнения следует, что при нормально распределенном случайном процессе вероятность события, попадающего в интервал 2 стандартных единиц от среднего, составляет примерно 95,45%.
Как и в случае с уравнением (3.21), можно убрать первую единицу в уравнении (3.22), чтобы получить (1 - N(ABS(Z))) * 2, что представляет вероятности события вне ABS(Z) стандартных единиц от среднего. Это отображено на рисунке 3-11. Для нашего примера, где Z = 2, вероятность события при нормально распределенном случайном процессе вне 2 стандартных единиц составляет:
2-хвостая вероятность (вне) = (1 - 0,9772499478) * 2 =0,02275005216*2 =0,04550010432
Наконец, мы рассмотрим случай, когда надо найти вероятности (площадь под кривой N'(Z)) для двух различных значений Z.
Рисунок 3-10 2-хвостая вероятность события между +2 и -2 сигма
Рисунок 3-11 2-хвостая вероятность события, находящегося вне 2 сигма
Допустим, нам надо найти площадь под кривой N'(Z) между -1 стандартной единицей и +2 стандартными единицами. Есть два способа расчета. Мы можем рассчитать вероятность, не превышающую +2 стандартные единицы, при помощи уравнения (3.21) и вычесть вероятность, не превышающую -1 стандартную единицу (см. рисунок 3-12). Это даст нам: