Вход/Регистрация
Введение в логику и научный метод
вернуться

Коэн Моррис Р.

Шрифт:

Отношение включения (<) является транзитивным и несимметричным, т. к. если а < b и Ь < с, то а < с. Но если а < b, то из этого еще не следует, что b < а. Мы можем определить равенство двух классов в терминах обоюдного включения. Класс а равен Ь, если а включен в Ь и Ь включен в а, т. е. если у них одни и те же члены. Символически это будет выглядеть так: (а = Ь) = (а < b). (Ь < а), где знак «=» обозначает равенство между классами, а знак «=» обозначает эквивалентность между суждениями, а точка («.») обозначает совместное утверждение двух суждений.

Принципы исчисления классов Чтобы начать исчисление, нужно установить ряд основополагающих принципов, которые будут совершенно недвусмысленно определять природу только что обсуждавшихся нами операций и отношений. Обычно предполагается следующий набор принципов.

1. Принцип тождества : для любого класса а < а.

В этом принципе утверждается, что каждый класс включен в самого себя. Из данного принципа, а также из определения равенства следует, что а = а.

2. Принцип противоречия :

= 0.

Ничто не является членом класса а и одновременно членом класса не-а.

3. Принцип исключенного третьего : а +

= 1.

Каждый индивид универсума либо является членом а, либо членом не-а.

4. Принцип перестановки : аb = Ьа

а + Ь = Ь + а.

Проиллюстрировать данный принцип можно следующим образом: класс индивидов, являющихся одновременно немцами и музыкантами, это то же самое, что и класс индивидов, являющихся одновременно музыкантами и немцами; класс индивидов, являющихся немцами или музыкантами, это то же самое, что и класс индивидов, являющихся музыкантами или немцами.

5. Принцип ассоциации :

( ab ) c = a ( bc ),

( a + b ) + c = a + ( b + c ).

6. Принцип дистрибуции :

( a + b ) c = ac + bc ,

ab + c = ( a + c ) ( b + c ).

В первой строчке выражен аналог хорошо известного свойства обычных чисел. Во второй же вводится значимое различие между предлагаемой алгеброй и ее обычным (вычислительным) видом.

7. Принцип тавтологии :

aa = a ,

a + a = a .

Эти два принципа заключают в себе радикальное различие между обычной (вычислительной) алгеброй и той, что предлагается здесь.

8. Принцип поглощения :

a + ab = a ,

a ( a + b ) = a .

9. Принцип упрощения :

ab < a,

a < a + b .

Из последних двух принципов следует, что нуль-класс включен в любой класс (0 < а) и что любой класс включен в универсум (а < 1). Чтобы наглядно в этом убедиться, нужно всего лишь допустить, что Ь = 0 в первом выражении и что Ь = 1 во втором выражении.

10. Принцип композиции :

[( a < b ) . ( c < d )] ( ac bd )

[( a < b ) . ( c < d )] [( a + c ) < ( b + d )].

Здесь мы, как обычно, используем символ «» для обозначения отношения импликации и точку («.») для обозначения совместного утверждения обоих суждений. Первое выражение читается так: «Если а включен в b и с включен в d , то логическое произведение а и с включено в логическое произведение b и d .

11. Принцип силлогизма :

  • Читать дальше
  • 1
  • ...
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: