Вход/Регистрация
Введение в логику и научный метод
вернуться

Коэн Моррис Р.

Шрифт:

[( a < b ) . ( b < c )] ( a < c ).

Если а включен в Ь и Ь включен в с, то а включен в с. Отношение «включен в» тем самым задается как транзитивное.

Выражение традиционных категорических суждений

Теперь выразим символически каждый из четырех видов категорических суждений.

Суждение «все а суть b» может быть выражено как «(а < b)». Более того, можно показать, что эта запись эквивалентна записи «(аb = 0)». Поэтому мы получаем: «(а <

) (

= 0)».

Суждение «ни один а не есть b» эквивалентно суждению «все а суть не-». Следовательно, символически эта запись может быть выражена как «(a <

)». Однако данное выражение эквивалентно выражению «(ab = 0)», так что можно получить и следующую запись: «(a <

) (ab = 0)».

Частные суждения противоречат общим, и поэтому в них отрицается то, что утверждается в общих. Поэтому в суждении «некоторые а суть Ь» отрицается то, что ни один а не есть Ь (символически: a <

). Это обстоятельство может быть выражено как «(a <

)'» или как «(ab /= 0).

Суждение «некоторые а не суть b» должно противоречить суждению (а < b). Следовательно, его можно выразить как «(a < b)'» или как «(

/= 0)».

Каждая из этих четырех символических форм должна быть знакома читателю по проведенному ранее анализу категорических суждений.

Доказательство теоремы де Моргана В рамках данной книги мы не можем развить исчисление классов, с тем чтобы показать его огромные возможности. Однако мы хотели бы проиллюстрировать природу доказательства в этом исчислении, предложив демонстрацию теоремы де Моргана применительно к классам.

Нам нужно найти дополнение к классу (a + Ь).

В силу принципа исключенного третьего a +

= 1 и Ь +

= 1. Также, согласно принципу упрощения, 1x1 = 1 и  (а +

) (Ь +

) = 1. Используя принципы дистрибуции и ассоциации, вышесказанное можно записать так: (ab +

+

) + (

) = 1.

Теперь рассмотрим классы (ab +

+

) и (

). Они исчерпывают универсум, поскольку их сумма равняется 1; они также являются взаимоисключающими, поскольку их произведение равняется 0. Поэтому любой из них является дополнением другого.

Однако, согласно принципу тавтологии, ab +

+

= ab +

+

+ ab. Правая часть, по принципу дистрибуции, равна а (Ь +

) + Ь (а +

) = а + Ь. Следовательно, поскольку (

) является дополнением к (ab +

+

), который, в свою очередь, равен (а + Ь), то, значит, (

) также равен и (а + Ь).

Следовательно, мы получаем (

) = (

), что является одной из форм теоремы де Моргана.

Теперь попробуем получить дополнение к ab.

Используя аргумент, тождественный только что приведенному, (ab) и (

+

+

) являются дополнениями друг к другу. Также мы имеем:

  • Читать дальше
  • 1
  • ...
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: