Вход/Регистрация
Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
вернуться

Кёртен Роб

Шрифт:

Как и в случае с описанной выше функцией ClockAdjust, с помощью параметров new и old вы получаете и/или устанавливаете значения базовой разрешающей способности по времени. Параметры new и old являются указателями на структуры типа

struct _clockperiod
, которые, в свою очередь, содержат два элемента — nsec и fract. На настоящий момент элемент fract должен быть равен нулю (это число фемтосекунд (миллиардная доля микросекунды — прим. ред.); нам, вероятно, это еще не скоро потребуется). Параметр nsec указывает, сколько наносекунд содержится в интервале между двумя базовыми отсчетами времени. Значение этого интервала времени по умолчанию — 10 миллисекунд, поэтому значение nsec (если вы используете функцию для получения базового разрешения) будет приблизительно равно 10 миллионам наносекунд. (Как мы уже упоминали ранее в разделе «Источники прерываний таймера», это не будет в точности равняться 10 миллисекундам.)

При этом вы можете, конечно, не стесняться и попробовать назначить базовой разрешающей способности какое-нибудь смехотворно малое значение, но тут вмешается ядро и эту вашу попытку пресечет. В общем случае, в большинстве систем допускаются значения от 1 миллисекунды до сотен микросекунд.

Точные временные метки

Существует одна система отсчета времени, которая не подчиняется описанным выше правилам «базовой разрешающей способности по времени». Некоторые процессоры оборудованы встроенным высокочастотным (высокоточным) счетчиком, к которому QNX/Neutrino обеспечивает доступ при помощи функции ClockCycles. Например, в процессоре Pentium, работающем с частотой 200 МГц, этот счетчик увеличивается тоже с частотой в 200 МГц, и поэтому он может обеспечить вам значение времени с точностью до 5 наносекунд. Это особенно полезно, когда вы хотите точно выяснить, сколько времени затрачивается на выполнение конкретного фрагмента кода (в предположении, конечно, что он не будет вытеснен). В этом случае вы должны вызвать функцию ClockCycles перед началом вашего фрагмента и после его окончания, а потом просто подсчитать разность полученных отсчетов. Более подробно это описано в руководстве по Си-библиотеке.

Тайм-ауты ядра

QNX/Neutrino позволяет вам получать тайм-ауты по всем блокированным состояниям. Мы обсуждали эти состояния в главе «Процессы и потоки» в разделе «Состояния потоков». Наиболее часто у вас может возникнуть потребность в этом при обмене сообщениями: клиент, посылая сообщение серверу, не желает ждать ответа «вечно». В этом случае было бы удобно использовать тайм-аут ядра. Тайм-ауты ядра также полезны в сочетании с функцией pthread_join: завершения потока тоже не всегда хочется долго ждать.

Ниже приводится декларация для функции TimerTimeout, которая является системным вызовом, ответственным за формирование тайм-аутов ядра.

#include <sys/neutrino.h>

int TimerTimeout(clockid_t id, int flags,

 const struct sigevent *notify,

 const uint64_t *ntime, uint64_t *otime);

Видно, что функция TimerTimeout возвращает целое число (индикатор удачи/неудачи; 0 означает, что все в порядке, -1 — что произошла ошибка, и ее код записан в errno). Источник синхроимпульсов (CLOCK_REALTIME, и т.п.) указывается в id, параметр flags задает соответствующее состояние (или состояния). Параметр notify всегда должен быть событием уведомления типа SIGEV_UNBLOCK; параметр ntime указывает относительное время, спустя которое ядро должно сгенерировать тайм-аут. Параметр otime показывает предыдущее значение тайм-аута и в большинстве случаев не используется (вы можете передать вместо него NULL).

Важно отметить, что тайм-ауты «взводятся» функцией TimerTimeout, а запускаются по входу в одно из состояний, указанных в параметре flags. Сбрасывается тайм-аут при возврате из любого системного вызова. Это означает, что вы должны заново «взводить» тайм-аут перед каждым системным вызовом, к которому вы хотите его применить. Сбрасывать тайм-аут после системного вызова не надо — это выполняется автоматически.

Тайм-ауты ядра и функция pthread_join

Самый простой пример для рассмотрения — это использование тайм-аута с функцией pthread_join. Вот как это можно было бы сделать:

/*

 * tt1.c

*/

#include <stdio.h>

#include <pthread.h>

#include <inttypes.h>

#include <errno.h>

#include <sys/neutrino.h>

#define SEC_NSEC 1000000000LL // В одной секунде

// 1 биллион наносекунд

void* long_thread(void *notused) {

 printf("Этот поток выполняется более 10 секунд\n");

 sleep(20);

}

int main(void) // Игнорировать аргументы

{

 uint64_t timeout;

 struct sigevent event;

 int rval;

 pthread_t thread_id;

 // Настроить событие — это достаточно сделать однажды

 // Либо так, либо event.sigev_notify = SIGEV_UNBLOCK:

 SIGEV_UNBLOCK_INIT(&event);

 // Создать поток

 pthread_create(&thread_id, NULL, long_thread, NULL);

 // Установить тайм-аут 10 секунд

 timeout = 10LL * SEC_NSEC;

 TimerTimeout(CLOCK_REALTIME, _NTO_TIMEOUT_JOIN, &event,

  • Читать дальше
  • 1
  • ...
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: