Шрифт:
Законы Эйнштейна
Как это ни удивительно, во многих отношениях законы физики выглядят проще в искривлённом пространстве-времени, чем в ньютоновской физике. Возьмём, например, движение частиц. Ньютоновские законы начинаются с принципа инерции, который гласит:
В отсутствие действия сил каждый объект остаётся в состоянии равномерного движения.
В этом внешне простом законе за выражением «равномерное движение» скрываются две самостоятельные идеи. Во-первых, «равномерное движение» подразумевает движение вдоль прямой линии в пространстве. Но Ньютон имел в виду нечто большее: равномерность движения также подразумевает постоянство, неизменность скорости, то есть отсутствие ускорения [31] .
31
Понятие ускорение охватывает любое изменение скорости, включая замедление, которое мы обычно называем торможением. Для физика торможение — это просто отрицательное ускорение.
Но что же происходит с гравитационными силами? Ньютон добавляет второй закон — закон неравномерного движения, — который утверждает, что сила равна произведению массы на ускорение, или, если выразить это иначе:
Ускорение объекта равно приложенной к нему силе, делённой на его массу.
Третий закон применяется, когда сила вызвана гравитацией:
Сила гравитации, действующая на любой объект, пропорциональна его массе.
Минковский упростил ньютоновское представление о равномерном движении, догадавшись объединить оба этих условия:
В отсутствие сил любой объект движется через пространство-время вдоль прямой мировой линии.
Прямизна мировой линии подразумевает не только прямолинейность движения в пространстве, но также и постоянство скорости.
Гипотеза Минковского о прямизне мировой линии была изящным синтезом двух аспектов равномерного движения, но она применима только при полном отсутствии сил. Эйнштейн вывел идею Минковского на новый уровень, применив её к искривлённому пространству-времени.
Новый эйнштейновский закон движения был потрясающе прост. В любой точке своей мировой линии частица ведёт себя простейшим возможным способом: движется прямо вперёд (в пространстве-времени). Если пространство-время плоское, закон Эйнштейна сводится к закону Минковского, но в искривлённом пространстве-времени, в областях, где массивные тела деформируют и закручивают пространство-время, новый закон предписывает частицам двигаться вдоль геодезических пространства-времени.
Как объяснял Минковский, искривление мировой линии указывает, что на объект действует сила. Согласно новому закону Эйнштейна, частицы в искривлённом пространстве-времени движутся настолько прямолинейно, насколько могут. Однако геодезические неизбежно искривлены, и их изгибы соответствуют местному ландшафту пространства-времени. Математические уравнения Эйнштейна показывают, что геодезическая в искривлённом пространстве-времени ведёт себя в точности так, как искривлённая мировая линия частицы, движущейся в гравитационном поле. Таким образом, сила гравитации — это не что иное, как искривление геодезических в искривлённом пространстве-времени.
В одном почти до смешного простом законе Эйнштейн объединил ньютоновские законы движения с гипотезой Минковского о мировой линии и объяснил, как гравитация воздействует на все объекты. То, что у Ньютона оставалось необъяснённым природным явлением, — силы тяготения — Эйнштейн объяснил как влияние неевклидовой геометрии пространства-времени.
Благодаря принципу движения частиц вдоль геодезических появляется новый эффективный способ понимания гравитации, но он ничего не говорит о причинах искривления. Чтобы придать целостность своей теории, Эйнштейну требовалось объяснить, чем вызвано появление искривлений и других неоднородностей пространства-времени. В старой ньютоновской теории источником гравитационного поля была масса: в присутствии массы, подобной, например, Солнцу, вокруг неё возникает гравитационное поле, которое в свою очередь воздействует на движение планет, поэтому для Эйнштейна было естественно предположить, что присутствие массы (или, что эквивалентно, энергии) заставляет пространство-время искривляться. Джон Уилер, один из первопроходцев и учителей современной релятивистской теории, суммировал это в одной ёмкой фразе: «Пространство говорит телам, как им двигаться, а тела говорят пространству, как ему искривляться». (Он подразумевал пространство-время.)
Новая идея Эйнштейна означала, что пространство-время не пассивно, оно имеет свойства, такие как кривизна, которые зависят от присутствия масс. Это почти как если бы пространство-время было эластичным или даже жидким материалом, подверженным влиянию объектов, которые по нему движутся.
Связь между массивными объектами, гравитацией, кривизной и движением частиц иногда описывают с помощью аналогии, относительно которой я испытываю смешанные чувства. Идея состоит в том, чтобы представлять пространство горизонтальным резиновым листом вроде батута. Когда нет деформирующих его масс, лист остаётся плоским. Но поместите на лист тяжёлый груз, например шар для боулинга, и его вес вызовет деформацию. Теперь добавьте значительно меньшую массу, подойдёт любой небольшой шарик, и вы увидите, как он скатывается к тяжёлому шару для боулинга. Шарику можно также придать касательную скорость, так чтобы он обращался вокруг большей массы, подобно Земле вокруг Солнца. Прогиб поверхности не даёт меньшему шарику укатиться прочь, в точности как солнечное тяготение удерживает Землю.
Но кое-что в этой аналогии вводит в заблуждение. Во-первых, искривление резинового листа происходит только в пространстве, а не в пространстве-времени, поэтому не удаётся объяснить странное воздействие масс на находящиеся рядом часы (мы рассмотрим эти эффекты в следующей главе). Ещё хуже то, что эта модель использует гравитацию для объяснения гравитации. Ведь это притяжение настоящей Земли заставляет шар для боулинга продавливать резиновую поверхность. Так что технически модель резинового листа совершенно неверна.
Тем не менее эта аналогия отчасти передаёт дух общей теории относительности. Пространство-время деформируемо, и большие массы могут его искривлять. Кривизна, порождённая массивными объектами, влияет на движение небольших. А продавленный резиновый лист во многом напоминает характерную математическую диаграмму, о которой я вскоре буду рассказывать. Пользуйтесь этой аналогией, когда она полезна, но помните, что это — всего лишь аналогия.
Чёрные дыры