Вход/Регистрация
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
вернуться

Сасскинд Леонард

Шрифт:

Так почему бы нам не изменить единицы, чтобы эти числа стало проще запоминать? На практике часто так и делается. Например, в астрономии, где для измерения длины используется световой год. (Ненавижу, когда световой год ошибочно используют в качестве единицы времени: «Эгей! Целый световой год прошёл, как мы с тобой не виделись!») Скорость света не так велика, если выразить её в световых годах в секунду. На самом деле она очень мала — всего около 3•10– 8. Но что, если также заменить единицу времени и вместо секунды взять год? Поскольку свет тратит ровно один год на то, чтобы пройти один световой год, скорость света составит один световой год в год.

Скорость света — одна из фундаментальных величин в физике, так что есть смысл использовать такие единицы, в которых она равна единице. Но вот, скажем, радиус протона — вещь не особо фундаментальная. Протоны — сложные объекты, состоящие из кварков и других частиц, так зачем предоставлять им почётное первое место? Гораздо осмысленнее выбрать константы, которые управляют глубочайшими и самыми универсальными законами физики. Нет больших разногласий, какие именно это законы.

Максимальная скорость любого объекта во Вселенной равна скорости света c. Этот предел скорости — закон не только для света, но для всего в природе.

Все объекты во Вселенной притягивают друг друга с силой, пропорциональной произведению их масс и гравитационной постоянной G. «Все объекты» означает все объекты без исключения.

Для любого объекта во Вселенной произведение его массы на неопределённости положения и скорости никогда не бывает меньше постоянной Планка h.

Курсив здесь подчёркивает всеобщий характер данных законов. Они применимы ко всем объектам вместе и к каждому в отдельности — ко всему сущему. Эти три закона природы действительно заслуживают того, чтобы их называли универсальными, — в куда большей мере, чем законы ядерной физики или свойства конкретных частиц вроде протона. Это может казаться тривиальным, но одно из самых глубоких озарений относительно структуры физики снизошло на Макса Планка, когда в 1900 году он понял, что можно так выбрать единицы длины, массы и времени, что сделать все три фундаментальные постоянные — c, G и h — равными единице.

Фундаментальный масштаб — это планковская единица длины. Она намного меньше метра и даже диаметра протона. В действительности она примерно в сто миллиардов миллиардов раз меньше протона (в метрах это примерно 10– 35). Даже если протон увеличить до размеров Солнечной системы, планковская длина будет не больше вируса. Нетленная заслуга Планка в том, что он догадался: этот невозможно крошечный размер должен играть фундаментальную роль в любой окончательной теории физического мира. Планк не знал, что это будет за роль, но он понял, что наименьшие строительные блоки материи будут «планковского размера».

Единица времени, которая потребовалась Планку, чтобы сделать c, G и h равными единице, тоже оказалась чрезвычайно малой, а именно 10– 42 секунды, — время, которое требуется свету, чтобы пройти одну планковскую длину.

Наконец, существует планковская единица массы. Учитывая, что планковская длина и планковское время столь невероятно малы (в обыденных, биоориентированных единицах), было бы естественно ожидать, что планковская единица массы окажется много меньше массы любого обычного объекта. Но тут-то вы и ошибётесь. Оказывается, самая фундаментальная единица массы в физике не так уж страшно мала по биологическим меркам и составляет массу примерно десяти миллионов бактерий. Это примерно равно массе мельчайшего объекта, ещё различимого невооружённым глазом, пылинки например.

Эти единицы — планковские длина, время и масса — имеют экстраординарное значение: это размер, время полураспада и масса самой маленькой возможной чёрной дыры. В следующих главах мы ещё вернёмся к этому вопросу.

E=m•c2

Возьмём сосуд, наполним его кубиками льда, крепко запечатаем и взвесим на кухонных весах. Теперь поставим его на горелку и расплавим лёд, превратив его в горячую воду. Взвесим снова. Если вы сделаете это достаточно тщательно, добившись, чтобы в сосуд ничего не попадало извне и из него ничего не выходило наружу, то конечный вес окажется равным исходному, вплоть до очень высокой точности взвешивания. Но если бы вы могли измерять вес с погрешностью не больше одной триллионой, то заметили бы различие; горячая вода весила бы немного больше, чем лёд. Иначе говоря, нагревание добавляет к весу несколько триллионных долей килограмма.

Что происходит? Ну, просто тепло — это энергия. Но согласно Эйнштейну, энергия — это масса, так что добавление тепла к содержимому сосуда увеличивает его массу. Знаменитое уравнение Эйнштейна E=m•c2 выражает тот факт, что масса и энергия — это одна и та же вещь, измеренная в разных единицах. В сущности, это подобно переводу миль в километры; расстояние в километрах — это расстояние в милях, помноженное на 1,61. В случае массы и энергии переводной коэффициент равен квадрату скорости света.

Стандартная физическая единица для энергии — джоуль. Сто джоулей — это энергия, требуемая для работы 100-ваттной лампочки в течение одной секунды. Один джоуль — это кинетическая энергия двухкилограммового груза, движущегося со скоростью один метр в секунду. Пища ежедневно даёт вам около 10 миллионов джоулей энергии. В то же время стандартная международная единица массы — килограмм — равна массе литра воды.

Формула E=m•c2 говорит нам, что масса и энергия — это взаимозаменяемые понятия. Если удастся уничтожить немного массы, она превратится в энергию, часто в форме тепла, хотя и не обязательно. Представьте, что килограмм массы исчез и заменён теплом. Чтобы понять, сколько получится тепла, умножьте один килограмм на очень большое число c2. Результатом будет около 1017 джоулей. На таком запасе вы сможете прожить 30 миллионов лет или создать очень мощную ядерную боеголовку. К счастью, преобразовать массу в другие формы энергии очень трудно, но Манхэттенский проект [56] доказал, что это возможно.

56

Так называлась разработка атомной бомбы в Лос-Аламосе, штат Нью-Мексико, во время Второй мировой войны.

  • Читать дальше
  • 1
  • ...
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: