Вход/Регистрация
Математика от А до Я: Справочное пособие (издание третье с дополнениями)
вернуться

Романов Алексей Михайлович

Шрифт:

Отметим, что подобные температурные (концентрационные) неоднородности продолжают свое поступательное движение в ветровом потоке, являясь фактически динамически пассивными. Рассмотрим оба этих случая.

Стабилизаиия вещества разрушившегося клуба

Назовем фрагменты разрушившегося выброса термоклубами или термооблаками (сокращенно — облаками). В дальнейшем будут использованы оба этих названия.

На завершающем участке подъема подобного выброса изменением кинетической энергии можно пренебречь по сравнению с изменением его внутренней энергии. При этом справедливо уравнение баланса этой характеристики, как для выброса в целом, так и для отдельных его термоклубов.

Внутренняя энергия термоклуба при его подъеме с высоты Z1 до высоты Z2 может измениться только за счет охлаждения вовлеченным воздухом. Для моментов времени tt и t2 (соответствующих высотам Zt и Z2) можно записать следующее соотношение:

(M)2=(M)1+Me· (3.83)

Рис. 3.19. Схема эволюции кратковременного выброса в ветровом потоке: 0 — место инцидента; 1 — ветер; Zg — высота потери выбросом динамической индивидуальности; Zm — высота стабилизации вещества выброса.

В этом соотношении:

= h + gZ; '=h+gZ;

где h = Ср — Т — статическая энтальпия единицы массы облака; М,Ме — масса облака и масса вовлеченного в него воздуха; h = Ср Т — статическая энтальпия ед. массы окружающего воздуха.

Разделим обе части (3.83) на Z при учете вида h и считая Ср Ср:

В дифференциальной форме это уравнение записывается так:

Используя соотношение для вовлечения

, приходим к следующему уравнению:

Обозначим дефект температуры клуба

Т — Т=

и перейдем к высотной координате, используя соотношения

Получаем:

Постоянная С находится из условия: при Z=Zg u=ug при задании конкретных значений  (Z) и M(Z), являющихся сложными функциями высоты Z.

Вводя как в работе [132] удельную скорость вовлечения

представляющую собой массу вовлекаемого воздуха, отнесенную к единице высоты Z, получаем для М следующие выражение:

М = еZ

Рассмотрим вначале случай постоянных значений и .

Подставив это выражение для массы облака в формулу (3.84) при = const и = const, получаем:

Находим постоянную интегрирования:

при Z=Zg = g

откуда

И окончательное выражение для дефекта температуры термоклуба получаем при подстановке постоянной С в уравнение (3.85):

Эта формула при Zg = 0 совпадает с формулой работы [132], полученной в предложении сохранения потенциальной температуры воздушной частицы при ее адиабатическом смещение вдоль оси Z и при задании исходного уровня Z=0 и начального перегрева 0 =Т0 — Т.

Высота стабилизации вещества облака из соотношения (3.86), определяемая из условия 0=0, находится при подстановке вместо Z его предельного значения Zm.

Поучаем

Это выражение является обобщением формулы Л. Махты для высоты стабилизации выброса в атмосфере, которое учитывает процесс неадиабатического расплывания выброса, начинающийся с уровня Zg — высоты потери его динамической индивидуальности.

Формула Л. Махты [127]:

где 0 — разность потенциальных температур на исходном уровне Z = О, дает аналогичные значения для Zm.

Формула (3.87) имеет смысл при у < О, т. е. при устойчивом состоянии атмосферы, когда температура воздуха уменьшается с высотой медленнее, чем на 1 градус на каждые 100 метров.

При этом

На графиках Рис. 3.20 представлено сравнение результатов расчетов высот подъема взрывных выбросов Zm в зависимости от начального перегрева вещества клуба, выполненное по различным формулам. Отметим, что формула (3.87) при Z = 0 и g0 =Т0– Т дает значения высот подъема взрывных клубов такие же, как по формуле Л. Махты.

  • Читать дальше
  • 1
  • ...
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: