Вход/Регистрация
Математика от А до Я: Справочное пособие (издание третье с дополнениями)
вернуться

Романов Алексей Михайлович

Шрифт:

Тороидальный вихрь, образовавшийся при малых временах на периферии пожара, под действием сил плавучести поднимается, формируя характерную грибовидную форму (рис. 4.2в) — стадия зависания колонки.

Расчеты показали, что при мощности пожара qm = 5-104 Вт/м2 наибольшая вертикальная скорость потока (43 м/с) наблюдается на оси симметрии, при этом максимальная величина радиальной скорости у границ очага горения не превышает 17 м/с. Вовлечение холодного воздуха в восходящую струю наблюдается до высоты «4 км. На высотах от 7 до 11 км образуется зона зависания, в которой дымовой аэрозоль и вовлеченный в струю воздух растекаются в горизонтальном направлении от оси симметрии течения. Через 1 час дымовое облако растекается на площади 700 км2, что почти на порядок больше площади очага горения.

Вода, выделяющаяся при конденсации влажного воздуха, в виде дождевых капель, снега и льда может выпасть в виде осадков.

Полученные результаты показывают, что динамика формирования конвективной колонки, высота подъема аэрозоля и характер его распределения в выбросе зависят не только от мощности пожара, но и от влажности атмосферы. Фазовые переходы, вызванные присутствием влаги в атмосфере, существенно влияют на характеристики подъема, зависания и выноса аэрозоля в атмосферу, а также процессы вымывания осадками частиц аэрозоля. В связи с этим при анализе пространственно-временной картины формирования тепловой колонки при пожарах необходим учет влажности и устойчивости атмосферы, а также уровня тропопаузы.

4.5. Дымления, испарения, туманы

Выбросы, возникающие при испарениях жидкостей и дымлениях твердых горючих тел, являются важными поставщиками токсичных веществ в атмосферу. Эти процессы объединяет то, что носителями загрязнений являются мельчайшие твердые или жидкие частицы, строго следующие движениям воздуха. Скорость поступления таких частиц в атмосферу определяется молекулярными эффектами, а скорость переноса — турбулентными характеристиками потока.

Вследствие своей малости и быстрого разбавления воздухом частицы испаряющейся жидкости или дыма практически не влияют на газодинамику выброса и фактически являются пассивной субстанцией. Поэтому уравнения, описывающие выбросы дымления и испарительный выброс, имеют одинаковый вид.

При построении математических моделей движения атмосферных объемов, включающих в себя мельчайшие твердые или жидкие частицы, вводится предположение [121] о том, что их наличие не оказывает сколько-нибудь заметного влияния на характер такого движения. Иными словами, предполагается, что примесь капель жидкости или аэрозольных дымовых частиц в воздухе является консервативной и химически пассивной.

Что касается дымовых аэрозолей, то такое предположение является весьма оправданным и подтверждается многочисленными экспериментальными данными. Водяной пар в воздухе при отсутствии фазовых переходов является [121, 129, 130] консервативной скалярной примесью.

Как известно [121], любая консервативная субстанция, смешивающаяся с движущейся жидкостью, переносится относительно системы координат, связанной со средним ее движением, путем турбулентного и молекулярного обмена. Общий поток массы выражается в виде

В соответствии с законом Фика

где kv — коэффициент молекулярной диффузии рассматриваемой физической субстанции (водяного пара или дыма) в воздухе; pv — ее плотность.

Уравнение сохранения консервативной пассивной примеси в предположении постоянства pv и kv по пространству имеет вид [121]

где q — концентрация примеси.

Отметим, что это уравнение имеет весьма общий вид, и им можно пользоваться для определения изменения любой консервативной и пассивной примеси или любого свойства воздуха, заменив q на концентрацию, выраженную отношением массы примеси к единичному объему общей массы воздуха и понимая под ки коэффициент молекулярной диффузии этой примеси.

Записанное выше уравнение диффузии можно решить, выбрав подходящие граничные условия и зная распределение поля скорости. Граничные условия задаются трех типов, а именно на поверхности z = 0 задается либо значение q, либо поток рассматриваемой примеси, либо поток примеси выражается через другие компоненты теплового баланса.

К сожалению, уравнение (4.26) не находит непосредственного применения в практических задачах, так как реальные потоки имеют турбулентный характер. Это означает, что в действительности невозможно определить скорость переноса и концентрации примесей в любой заданной точке пространства и времени, а можно найти только их статистические характеристики.

Для этого рассматривают осредненные величины, и в соответствии с общепринятым подходом, предложенным Рейнольдсом, зависимые переменные представляют в виде сумм не возмущенных величин и возмущений:

Применяя затем обычный метод осреднения по времени с соответствующим периодом осреднения и используя уравнение неразрывности, из уравнения (4.26) получается соотношение для нахождения

Члены в левой части этого уравнения представляют скорость изменения средней массовой доли вещества примеси, перемещающейся с осредненной скоростью движения воздуха. Ковариации пульсаций в правой части уравнения можно назвать турбулентными потоками по аналогии с напряжениями Рейнольдса. Они являются компонентами диффузионного потока, обусловленного турбулентным движением. Последний член представляет перенос средней субстанции за счет молекулярной диффузии.

  • Читать дальше
  • 1
  • ...
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: