Вход/Регистрация
Математика от А до Я: Справочное пособие (издание третье с дополнениями)
вернуться

Романов Алексей Михайлович

Шрифт:

Различают два способа испытания: проверка самой модели, состоящая в качественном или количественном сравнение данных, полученных в результате моделирования, с действительными значениями и проверка значимости модели — проведение экспериментов для изучения поведения модели и системы с целью обнаружения их сходства, а также для сравнения тенденций поведения модели и системы. Выделяется также адаптивное моделирование, при котором происходит автоматическая адаптация модели к системе с помощью ЭВМ.

Ниже в качестве примеров построения математических моделей атмосферных выбросов приводятся некоторые наиболее простые и достаточно эффективные разработки. Они на сегодняшний день получили всеобщее признание, и на их основе, очевидно, могут успешно разрабатываться многочисленные вариации конкретных нештатных ситуаций и опасных аварийных явлений.

4.1. Струи

Выбросы химических и радиоактивных веществ в виде струй являются наиболее распространенными источниками загрязнений природной среды. Такие выбросы возникают практически на любом промышленном предприятии или заводе, при работе транспорта и в быту. Широко распространенными являются аварийные струйные выбросы. Знание газодинамических, геометрических и концентрационных характеристик струй является необходимым условием для составления правильного прогноза возможного загрязнения окружающей среды при их истечении.

Поведение струи газа, истекающей в спокойную среду или спутный поток, изучалось в течение длительного времени, в результате чего были созданы разнообразные методы расчета газодинамических параметров струйных течений. Отличия в условиях истечения струй, а также в параметрах среды, в которых они реализуются, приводит к тому, что разработать единую математическую модель, охватывающую все встречающиеся на практике случаи, крайне затруднительно. Как правило, математические модели и инженерные методы расчета охватывают сравнительно узкие классы струйных течений, при этом в них широко используются эмпирические зависимости. Применение эмпирических соотношений позволяет получить хорошее согласие между расчетными и экспериментальными значениями, однако их обобщение на другие типы струйных течений затруднительно или вообще невозможно.

Наиболее многочисленную группу математических моделей и инженерных методов расчета составляют работы, связанные с осесимметричными газовыми струями в спокойной среде или спутном газовом потоке. Среди этих работ следует выделить монографии Г.Н. Абрамовича [91, 92], Вулиса А.С. [93, 94], Голубева В.А. [95], Шетца Дж. [97] и Гиневского А.С. [99].

Изучению затопленых струй посвящено большое количество работ [95–99]. Однако они, как правило, используют не всегда корректно полученные уравнения относительно одного или двух макроскопических параметров среды (например, массы примеси и (или) количества движения). Кроме того, их авторы в большинстве исследований ограничиваются рассмотрением течений в лабораторных условиях и не учитывают изменений макроскопических характеристик среды с высотой. Как показывает опыт, неучет реальных метеоусловий может привести к существенным ошибкам в вычислении динамических, тепловых и геометрических характеристик струи.

Целесообразно уравнения изменения основных характеристик установившегося струйного потока усреднять по его поперечному сечению с учетом уравнения статики атмосферы. При этом используется эйлеров подход рассмотрения поточных характеристик газа втекающего и вытекающего из газового объема, ограниченного контрольными сечениями, отстоящими на некотором расстоянии А/ друг от друга. Устремляя А/ к нулю, приходим к дифференциальным уравнениям, которые легко решаются при помощи ЭВМ [8, 73].

Задание равномерного по сечению струи распределения газодинамических характеристик позволяет, не теряя строгости рассмотрения, упростить задачу и свести ее к квазиодномерной. Турбулентное расширение газа струи учитывается интегрально введением понятия вовлечения окружающей среды. В результате такого рассмотрения получаются дифференциальные уравнения для определения скорости газа струи V, угла наклона оси струи к горизонту , концентрации i — ой примеси Сi, статической энтальпии единицы массы газа h.

Они имеют следующий вид:

Эти уравнения замыкаются соотношением для вовлечения Е [96]

уравнением статики атмосферы

связывающим статическое давление атмосферного воздуха Р с углом наклона и продольной координатой l струйного течения, а также уравнением состояния газа

4.2. Клубы

Клубы являются одними из наиболее распространенных аварийных выбросов, возникающих при авариях взрывного характера. Клубом называется изолированный объем сплошной среды (газа или жидкости), сильно турбулизованной и имеющей характерные геометрические размеры (ширина, высота, длина) одного порядка. Из-за турбулентного характера движения среды внутри клуба его массовые, термодинамические и концентрационные характеристики могут считаться однородными по объему.

Для вывода уравнений, позволяющих получить газодинамические, геометрические и концентрационные характеристики клуба, движущегося в атмосфере, исходят из записи соотношений баланса массы, количества движения и энергии ограниченного объема в близкие моменты времени t1 и t2 [4, 33, 47, 73]. Уменьшая промежуток t = t2 — t1, приходят к дифференциальным уравнениям для усреднённых по объему выброса величин: концентрации i-ой примеси, плотности газа, скорости центра масс выброса, температуры его вещества, а также для геометрических величин: угла наклона вектора скорости центра масс выброса к горизонту и его объема.

  • Читать дальше
  • 1
  • ...
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: