Вход/Регистрация
Новый ум короля: О компьютерах, мышлении и законах физики
вернуться

Пенроуз Роджер

Шрифт:

где с есть некое фиксированное (то есть заданное) комплексное число. Числу z 2+ с будет сопоставляться некоторая другая точка на плоскости Аргана. Например, если с равно числу 1,63— i4,2, то z отображается согласно формуле

z -> z 2+ 1,63— i4,2,

так что, в частности, число 3 превратится в

З 2+ 1,63 — i4,2= 9+ 1,63 — i4,2= 10,63 — i4,2,

а число – 2,7+ i0,3в

(- 2,7+ i0,3) 2 + 1,63 — i4,2=

= (- 2,7) 2 — ( 0,3) 2 + 1,63+

+ i{(- 2,7)( 0,3) — 4,2} = 8,83 — i5,82.

Когда числа становятся громоздкими, вычисления лучше выполнять на компьютере.

Теперь, каково бы ни было число c , число 0 превращается, согласно принятой схеме, в число с . А что же можно сказать о самом числе с ? Оно превращается в с 2+ с . Давайте продолжим этот процесс, применив наше преобразование к с 2+ с . Мы получим:

( с 2+ с) 2 + с= с+ 2 с+ с 2+ с.

Снова повторим отображение, применив его к приведенному выше числу. Мы получим:

( с 4+ 2 с 3+ с 2+ с) 2 + с=

= с 8+ 4с 7+ 6 с 6+ 6с 5+ 5с 4+ 2 с 3+ с 2+ с.

Потом еще раз применим процедуру, теперь уже к последнему числу, и т. д. В результате мы получаем последовательность комплексных чисел, которая начинается с числа 0 :

0, с, с 2+ с, с 4+ 2с 3+ с 2+ с…

Данная процедура, будучи реализована при некоторыхопределенных значениях комплексного числа с , дает последовательность чисел, которые все время остаются вблизи начала координат плоскости Аргана; точнее, для выбранных таким образом значений с получаемая последовательность оказывается ограниченной, то есть любой ее член находится в пределах некоторого фиксированного круга с центром в начале координат (рис. 3.12).

Рис. 3.12.Последовательность точек на плоскости Аргана ограничена, если вся она целиком помещается в пределах некоторого фиксированного круга. (Итерация на рисунке начинаетсл с точки 0 и построена для с = — l/2 + ( l/2 ) i .)

Хорошим примером здесь может служить последовательность с = 0 , поскольку каждый ее член равен 0 . Другим примером ограниченного поведения является случай с = 1, при котором получается последовательность 0, -1, 0, -1, 0, -1….; еще один пример — это с = i , когда получается последовательность 0, i, i — 1, -i, i — 1, -i, i — 1, -i….. Однако, для целого ряда других комплексных чисел с получаемая последовательность все дальше удаляется от начала координат, то есть является неограниченнойи не может находиться целиком в пределах фиксированного круга. Именно так происходит при с = 1 , когда получается последовательность 0, 1, 2, 5, 26, 677,458 330….; аналогичное поведение имеет место в случае с = 3— соответствующая последовательность имеет вид 0, -3, 6, 33,1086….; а также случай с = i — 1, который приводит к последовательности 0, i — 1, -i — 1, -1 + 3i, — 9 — i5, 55 + i91, -5257 + i10011,

  • Читать дальше
  • 1
  • ...
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: