Вход/Регистрация
Фейнмановские лекции по физике. 2. Пространство. Время. Движение
вернуться

Фейнман Ричард Филлипс

Шрифт:

Означает ли это, что в результате неподвижности центра масс ракета не может двигаться вперед? Конечно, нет, но, чтобы продвинуть вперед интересующую нас часть ракеты, мы что-то должны выбросить назад. Иными словами, если вна­чале ракета покоилась, а затем выбросила из сопла некоторое количество газа, то газ этот полетит назад, а сама ракета по­летит при этом вперед, однако центр масс останется точно на том же месте, где он был и раньше. Так что в ракете интере­сующая нас часть продвинется вперед за счет другой, которая улетит назад.

Второе замечание относительно движения центра масс. Его можно рассматривать отдельно от всех «внутренних» дви­жений тела и, следовательно, его можно не учитывать при изучении вращения. Собственно поэтому мы начали изучать вращения с центра масс.

§ 2. Вращение твердого тела

Поговорим теперь о вращении. Как известно, обычные предметы не вращаются просто так: они колеблются, вибри­руют, изгибаются. Поэтому, чтобы упростить рассуждения, рассмотрим движение несуществующего идеального объекта, который мы назвали твердым телом. В таком объекте связи между атомами столь сильны, что те небольшие силы, которые необходимы, чтоб привести его в движение, не могут деформи­ровать тело. Форма его все время остается одной и той же. Если мы хотим изучить движение такого тела и условимся не принимать во внимание движение его центра масс, то ему остается лишь вращаться. Вот это вращение мы и должны описать. Каким образом? Предположим, что в теле существует какая-то воображаемая неподвижная линия (она может про­ходить через центр масс, а может и не проходить); вокруг этой линии, как вокруг оси, вращается наше тело. Но как все-таки определить, что такое вращение? Сделать это совсем просто. Отметив какую-то точку на теле, где угодно, только не на оси, и зная, куда она перешла через некоторый промежуток времени, мы точно можем сказать, в каком положении находится тело. Единственное, что нужно знать для описания положения точки, - это угол. Таким образом, изучение вращения заключается в изучении изменения угла со временем.

Чтобы описать вращение, измерим угол, на который пово­рачивается тело. Разумеется, речь идет не об угле между двумя точками внутри самого тела или на теле, а об угловом изме­нении положения всего тела как целого от одного момента вре­мени до другого.

Сначала давайте разберемся с кинематикой вращения. Изменение угла со временем очень похоже на изменение по­ложения при одномерном движении; для плоского вращения мы можем говорить об угловом положении и угловой скорости. Между этими двумя движениями — плоским вращением и одномерным перемещением — существует очень интересная связь: почти каждая величина в одном случае имеет свой аналог в другом. Прежде всего угол q, указывающий, насколько повернулось тело, соответствует пройденному точкой расстоя­нию s. Угловая скорость w=dq/dt, которая показывает, с какой быстротой изменяется угол, соответствует обычной скорости v=ds/dt, описывающей быстроту изменения положения. Если угол измеряется в радианах, то угловая скорость w равна какому-то числу радиан в секунду. Чем больше угловая ско­рость, тем быстрее вращается объект и тем быстрее изменяется угол. Если продифференцировать угловую скорость по вре­мени, то получим величину a=dw/dt, которую мы будем на­зывать угловым ускорением. Оно может служить аналогом обычного ускорения.

Теперь нам следует связать динамику вращения с дина­микой частиц, из которых сделано тело, т. е. выяснить, как движется каждая данная частица, если угловая скорость со­ставляет столько-то радиан в секунду. Для этого давайте возьмем какую-то частицу, расположенную на расстоянии r от оси, и будем, как обычно, говорить, что в данный момент времени она находится в определенном положении Р(х, у) (фиг. 18.1).

Фиг. 18.1. Кинематика двумер­ного вращения.

Через промежуток времени Dt тело целиком по­вернется на угол Dq, а вместе с ним повернется и наша частица. Хотя расстояние от нее до оси вращения О остается тем же самым, она уже переместится в другую точку, Q. Первое, что хотелось бы знать, это насколько изменятся расстояния х и y. Если обозначить через rдлину ОР, то длина PQ будет равна rDq (просто по определению угла). Тогда изменение расстояния х будет равно проекции rDq на ось х

Dz=-PQsinq =-гDqy/r=-y/Dq. (18.6)

Аналогично,

Dy=xDq. (18.7)

Если тело вращается с угловой скоростью w, то, деля обе части равенства (18.6) и (18.7) на Dt, найдем компоненты скорости частицы

vx=-wx и vy=wy.(18.8)

Если же нам требуется абсолютная величина скорости, то мы просто пишем

Не удивительно, что абсолютная величина скорости получи­лась равной wr; это же очевидно; ведь полное пройденное рас­стояние равно rDq, а поэтому расстояние, пройденное за 1 сек, будет rDq/Dt, или rw.

Перейдем теперь к рассмотрению динамики вращения. Здесь следует ввести новое понятие — силу. Давайте посмотрим, нельзя ли изобрести нечто, играющее ту же роль, что и сила в линейном движении. Это нечто мы будем называть моментом силы, или просто моментом. Обычно под силой мы понимаем нечто, заставляющее покоящееся тело двигаться, а то, что заставляет тело вращаться, есть «вращающая», или «крутящая», сила; ее мы называем моментом. Таким образом, качественно момент силы — это кручение; но что такое момент силы коли­чественно? Количественную теорию момента можно получить, изучая работу, затраченную на поворот тела. Этот подход очень хорош и для определения силы: если мы знаем, какая требуется работа, чтобы совершить данное перемещение, то знаем и силу. Чтобы продолжить соответствие между угловыми и линейными величинами, мы должны приравнять работу, которая производится при повороте тела на какой-то угол, к произведению момента на этот угол. Другими словами, при таком определении момента теорема о работе имеет абсолютный аналог: работа есть сила на перемещение, или момент на угол. Это сразу говорит нам, что такое момент количественно. Рас­смотрим, например, твердое тело, вращающееся вокруг оси, на которое действуют различные силы. Сконцентрируем сначала наше внимание на одной силе, приложенной к некоторой точке (х, у). Какую работу мы затрачиваем, поворачивая тело на некоторый малый угол Dq? Нетрудно понять, что она равна

DW=FxDx+FyDy. (18.10)

Теперь нужно только подставить выражения (18.6) и (18.7) для Dx; и Dy и получить

DW=(xFy– yFx) Dq, (18.11)

т. е. работа, которую мы проделали, равна углу, на который было повернуто тело, умноженному на какую-то странную комбинацию сил и расстояний. Эта «странная комбинация» и есть момент. Таким образом, определяя изменение работы как момент, умноженный на угол поворота, мы получаем формулу, выражающую момент через силы. (Это понятно. По­скольку момент не является полностью новым понятием, не зависящим от механики Ньютона, то он должен определенным образом выражаться через силу.)

  • Читать дальше
  • 1
  • ...
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: