Вход/Регистрация
Фейнмановские лекции по физике. 8. Квантовая механика I
вернуться

Фейнман Ричард Филлипс

Шрифт:

Мы приходим к заключению, что из-за того, что имеется некоторая вероятность перескока атома азота из одного по­ложения в другое, энергия молекулы равна не просто Е0, как можно было ожидать, но обладает двумя энергетическими уровнями (Е0+А)и (Е0– А). Каждое из возможных состояний молекулы, какую бы энергию оно ни имело, «расщепляется» на два уровня. Мы говорим «каждое из состояний», потому что, как вы помните, мы выбрали какое-то определенное состояние вращения с определенной внутренней энергией и т. д. И для каждых мыслимых условий подобного рода возникает (из-за возможности переворота молекулы) пара энергетических уров­ней.

Теперь поставим следующий вопрос. Пусть мы знаем, что при t=0молекула находится в состоянии |1>, т. е. что С1{0)=1 и С2(0)=0. Какова вероятность того, что молекула будет обна­ружена в момент t в состоянии |2> или же что она окажется в этот момент в состоянии |1>? Наши начальные условия го­ворят нам, какими должны быть а и b в (6.50) и (6.51). Полагая t=0, имеем

Значит, а=b=1. Подставляя их в формулы для С1(t) и С2(t) и вынося общий множитель, получаем

Это можно переписать так:

Величина обеих амплитуд гармонически изменяется во времени. Вероятность того, что молекула будет обнаружена в со­стоянии |2> в момент t, равна квадрату модуля C2(t):

Она, как и следует, начинается с нуля, растет до единицы и затем колеблется вперед и назад между нулем и единицей, как показано на кривой, обозначенной P2, на фиг. 6.2.

Фиг. 6.2. p 1 — вероятность того, что молекула аммиака, находившаяся при t=0 в состоянии |1>, бу­дет обнаружена в момент t тоже в состоянии |1>; Р 2 — вероятность того, что она будет обнаружена в состоянии |2>.

Вероят­ность остаться в состоянии |1> тоже, конечно, не остается равной единице. Она «перекачивается» во второе состояние до тех пор, пока вероятность увидать молекулу в первом состоя­нии не обратится в нуль, как показано на кривой Р1фиг. 6.2. Вероятность попросту переливается туда и обратно между этими двумя состояниями.

Еще раньше мы видели, что бывает, если качаются два одинаковых маятника, слегка связанные друг с другом [см. гл.49 (вып.4)]. Когда мы отводим в сторону один из них и отпускаем, он колеблется, но затем постепенно начинает колебаться дру­гой и вскоре забирает себе всю энергию. Затем процесс обра­щается, и энергию отбирает первый маятник. В точности то же самое происходит и здесь. Скорость, с какой происходит обмен энергией (быстрота просачивания «колебаний»), зависит от связи между маятниками. Кроме того, как вы помните, при двух маятниках существуют два определенных типа движений (каждый с определенной частотой), которые мы назвали фун­даментальными типами колебаний. Если отклонить оба маят­ника вместе, они колеблются с одной частотой. Если же отклонить один в одну сторону, а другой — в другую, то появляется иной стационарный тип колебаний и тоже с определенной частотой. С тем же мы встретились и сейчас — молекула аммиака математически походит на пару маятников. Существуют две частоты (E0+A)/h и (Е0– A)/h, при которых они колеблются либо разом, либо навстречу друг другу.

Сходство с маятником ненамного глубже принципа, что у оди­наковых уравнений и решения одинаковы. Линейные уравнения для амплитуд (6.39) очень похожи на линейные уравнения для гармонических осцилляторов. (В действительности именно этой причине обязана успехом наша классическая теория пока­зателя преломления, в которой квантовомеханический атом мы заменяли гармоническим осциллятором, хотя классически неразумно говорить об электронах, циркулирующих вокруг ядра.) Толкнув атом азота в одну сторону, вы получите супер­позицию этих двух колебаний и тем самым своеобразные бие­ния, потому что система не будет находиться в том или ином состоянии с определенной частотой. Однако расщепление уров­ней энергии молекулы аммиака — это строго квантовомеханический эффект.

Расщепление уровней энергии молекулы аммиака имеет важные практические применения, которые мы опишем в сле­дующей главе. Наконец-то у нас будет пример практической физической задачи, которую мы сможем понять при помощи квантовой механики!

* Здесь небольшая неприятность с обозначениями. В этом множителе i означает мнимую единицу Ц-1, а не индекс i, относящийся к i-му базисному состоянию! Надеемся, это не слишком смутит вас.

* Вы можете оказать, что надо писать не просто А, но |А|. Но тогда это будет похоже на символ «абсолютного значения А». Поэтому обычно черточки опускают. Черточка (|) вообще ведет себя очень похоже на множитель единица.

 

  • 1
  • ...
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: