Шрифт:
где ei— электрическое поле, a Pijk— пьезоэлектрические коэффициенты (пьезомодули), составляющие тензор. Можете ли вы сами доказать, что если у кристалла есть центр инверсии (т. е. если он инвариантен относительно замены х, у, z®-х,-y,-z), то все его пьезоэлектрические коэффициенты равны нулю.
§ 8. Четырехмерный тензор электромагнитного импульса
Все тензоры, с которыми мы сталкивались в этой главе, были связаны с трехмерным пространством; они определялись как величины, имеющие известные трансформационные свойства при пространственных поворотах. А вот в гл. 26 (вып. 6) мы имели возможность воспользоваться тензором в четырехмерном пространстве-времени: это был тензор электромагнитного поля Fmv. Компоненты такого четырехмерного тензора особым образом преобразуются при преобразованиях Лоренца. (Мы этого, правда, не делали, но могли бы рассматривать преобразования Лоренца как своего рода «вращение» в четырехмерном «пространстве», называемом пространством Минковского; тогда аналогия с тем, что мы рассматривали здесь, была бы ярче.)
В качестве последнего примера мы хотим рассмотреть другой тензор в четырех измерениях (t, x, y, z) теории относительности. Когда мы говорили о тензоре напряжений, то определяли Sijкак компоненту силы, действующую на единичную площадку. Но сила равна скорости изменения импульса со временем. Поэтому вместо того, чтобы говорить «Sxy — это х-компонента силы, действующей на единичную площадку, перпендикулярную оси у», мы с равным правом могли бы сказать: «Sxy — это скорость потока x-компоненты импульса через единичную площадку, перпендикулярную оси у». Другими словами, каждый член Sij представляет поток i-й компоненты импульса через единичную площадку, перпендикулярную оси j. Так обстоит дело с чисто пространственными компонентами, но они составляют только часть «большего» тензора Smvв четырехмерном пространстве m. и v=t, x, у, z), содержащего еще дополнительные компоненты Stx, S yt, Sttи т. п. Попытаемся теперь выяснить физический смысл этих дополнительных компонент.
Нам известно, что пространственные компоненты представляют поток импульса. Чтобы найти ключ к распространению этого понятия на «временное направление», обратимся к «потоку» другого рода — потоку электрического заряда. Скорость потока скалярной величины, подобной заряду (через единичную площадь, перпендикулярную потоку), является пространственным вектором — вектором плотности тока j. Мы видели, что временная компонента вектора потока — это плотность текущего вещества. Например, j можно скомбинировать с плотностью заряда jt=r и получить четырехвектор jm=(r, j), т. е. значок m у вектора jm принимает четыре значения: t, х, у, z. Это означает «плотность», «скорость потока в x-направлении», «скорость потока в y-направлении» и «скорость потока в z-направлении» скалярного заряда.
Теперь по аналогии с нашим утверждением о временной компоненте потока скалярной величины можно ожидать, что вместе c Sxx,Sxyи Sxz, описывающими поток x-компоненты импульса, должна быть и временная компонента Sxt, которая по идее должна бы описывать плотность того, что течет, т. е. Sxtдолжна быть плотностью х-компоненты импульса. Таким образом, мы можем расширить наш тензор по горизонтали, включив в него t-компоненты, и в нашем распоряжении оказываются:
Sxt— плотность x-компоненты импульса,
Sxx — поток z-компоненты импульса в направлении оси х,
Sxy — поток y-компоненты импульса в направлении оси у,
Sxz — поток z-компоненты импульса в направлении оси z.
Аналогичная вещь происходит и с y-компонентой; у нас есть три компоненты потока: Syx, Syyи Syz, к которым нужно добавить четвертый член:
Syt — плотность y-компоненты импульса,
а к трем компонентам Szx, Szyи Szzмы добавляем
Szt — плотность z-компоненты импульса.
В четырехмерном пространстве у импульса существует также и t-компонента, которой, как мы знаем, является энергия. Так что тензор Sijследует продолжить по вертикали с включением в него Stx, Styи Stz, причем