Шрифт:
Фиг. 31.8. Разложение на компоненты силы Fn, действующей на грани N (с единичной нормалью n).
(Это, конечно, частный случай, но он достаточно хорошо иллюстрирует общий метод.) Дальше, напряжения, действующие на эту призмочку, должны быть такими, чтобы она находилась в равновесии (по крайней мере в пределе бесконечно малого размера), так что действующая на нее полная сила должна быть равна нулю. Силы, действующие на грани, параллельные осям координат, известны нам непосредственно из тензора Sij. А их векторная сумма должна равняться силе, действующей на грань N, так что эту силу можно выразить через Sij.
Наше допущение, что поверхностные силы, действующие на малый объем, находятся в равновесии, предполагает отсутствие объемных сил, подобных силе тяжести или псевдосилам, которые тоже могут присутствовать, если наша система координат не инерциальна. Заметьте, однако, что такие объемные силы будут пропорциональны объему призмочки и поэтому пропорциональны Dx,Dy, Dz, тогда как поверхностные силы пропорциональны DxDy, DyDz и т. п. Итак, если размер призмочки взять достаточно малым, то объемные силы будут пренебрежимо малы по сравнению с поверхностными.
А теперь сложим силы, действующие на нашу призмочку. Возьмемся сначала за х-компоненту, которая состоит из пяти частей, по одной от каждой грани. Но если Dz достаточно мало, то силы от треугольных граней (перпендикулярные оси z) будут равны друг другу и противоположны по направлению, поэтому о них можно забыть. На основание призмы действует x-компонента силы, равная
DFx2=SxyDхDz,
а x-компонента силы, действующей на вертикальную прямоугольную грань, равна
DFx1=SхxDz.
Сумма этих двух сил должна быть равна x-компоненте силы, действующей извне на грань N. Обозначим через n единичный вектор нормали к грани N, а через Fn — действующую на нее силу, тогда получим
DFxn=SxxDyDz+SxyDxDz.
Составляющая напряжения по оси х (Sxn), действующего в этой плоскости, равна силе DFxn, деленной на площадь, т. е. DzЦ(Dx2+Dy2), или
Но, как видно из фиг. 31.8, отношение Dх/Ц(Dx2+Dy2) — это косинус угла q между n и осью у и может быть записан как пу, т. е. y-компонента вектора n. Аналогично, Dy/Ц(Dx2+Dy2) равно sinq=nх. Поэтому мы можем написать
S xn =S xx n x +S xy n y
рели теперь обобщить это на произвольный элемент поверхности, то мы получим
Sxn= Sxxnx+Sxyny+Sxznz,
или в еще более общей форме:
Так что мы действительно можем выразить силу, действующую на произвольную площадь, через элементы Sijи полностью описать внутреннее напряжение.
Уравнение (31.24) говорит, что тензор Sij связывает силу Sn с единичным вектором n точно так же, как aijсвязывает Р с Е. Но поскольку n и Sn — векторы, то компоненты Sijпри изменении осей координат должны преобразовываться как тензор. Так что Sijдействительно тензор.