Вход/Регистрация
Пока алгебра не разлучит нас. Теория групп и ее применение
вернуться

Фресан Хавьер

Шрифт:

Обратите внимание, что верно и обратное: если r и m — взаимно простые числа, то прямое произведение двух циклических групп порядка r и m изоморфно циклической группе порядка гш, так как лемма устанавливает изоморфизм между ℤ/r х ℤ/m и ℤ/rm. Теперь посмотрим, как можно использовать эту лемму для выбора порождающих элементов G таким образом, чтобы порядок одного из них был делителем порядка другого. Выберем два порождающих элемента а и b произвольным образом.

Напомним: так как G коммутативная группа, все ее элементы можно представить в виде aibi, где i и j — целые числа, которые удовлетворяют условию 0 < i < порядок (а) и 0< j < порядок (b) (см. стр. 72).

Это же условие можно выразить другим, более сложным способом: функция <а> × <b> → G, которая ставит в соответствие пару (аi, bi) элементу aibi группы G, является сюръективной. Разумеется, основная сложность заключается в том, что нет никакой причины, по которой эта функция также должна быть инъективной.

Следовательно, запись аibi может быть не единственной, и если мы рассмотрим все члены аibi, то некоторые элементы G будут учтены более одного раза. Об этой проблеме мы поговорим чуть позже.

Рассмотрим порядок а и b. По основной теореме арифметики (стр. 89) оба этих числа можно разложить на простые множители. Разделим эти множители на две группы в зависимости от того, являются ли они одновременно делителями порядков а и b или нет. Чтобы читатель смог лучше понять рассуждения, ограничимся тем, что рассмотрим следующую ситуацию: существует единственное простое число р, которое одновременно является делителем порядков а и b (в общем случае рассуждения будут аналогичными, но все обозначения будут содержать верхние индексы, что затруднит чтение).

Выберем наибольшие степени р и запишем порядок (а) = рem, порядок (b) = рfn, где e и f — два положительных целых числа. Также предположим, что е < f. Обратите внимание, что m и n взаимно простые: если бы они имели общий простой делитель, он также был бы делителем порядков а и b, следовательно, был бы равен р. Это же верно для рe и m, а также для рf и n.

Применив лемму к циклическим группам, порожденным а и b, получим изоморфизмы <a>≃<am> × <apr> и <b>≃<bn> × <bpt>. Следовательно:

<a> × <b> ≃ <am> × <ape> × <bn> × <bpf>. (*)

131

Рассмотрим три последних множителя, которые имеют порядок m, pf и n соответственно. Так как m и pf взаимно простые, из леммы следует, что прямое произведение <apr> × <bn> изоморфно циклической группе порядка pfm. Так как n и pfm также взаимно простые, мы можем вновь применить эту лемму и показать, что произведение трех множителей изоморфно циклической группе <х> порядка pfmn.

Примем у = аm. Порядок этого элемента равен рe. Из формулы (*) следует, что прямые произведения <а> <b> и <х> <у> изоморфны, следовательно, существует сюръективное отображение <х> <у> на G. Иными словами, х и у порождают G.

Теперь нетрудно показать, что порядок (х) = pfmn делится на порядок (у) = рe, так как мы предположили, что е < f. Мы доказали следующую лемму [2] :

2

2 На самом деле мы доказали следующий, более точный результат.

Пусть С — конечная абелева группа, порожденная двумя элементами а и b. Пусть порядок (а) = p1e1 ... m prer и порядок (b) = p1f1 ... m prfr, где р — простые числа, e1 и f1 — целые неотрицательные числа, m и n — взаимно простые. Следовательно, группа G изоморфна группе, порожденной двумя элементами х и у такими, что порядок (х) = p1h1 ... prhr, mn и порядок (у) = p1g1 ... prgr, где h = max(е, f) и g = min(e, f) для всех i = 1,...,r.

Лемма 2. Пусть G — конечная абелева группа, порожденная двумя элементами.

Можно выбрать ее порождающие элементы так, что порядок одного будет делителем порядка другого.

Продолжим доказательство.

Порядок группы

Согласно предыдущей лемме мы можем выбрать порождающие элементы х и у группы G так, что порядок (у) = l и порядок (х) будет кратным l и равным, к примеру, lk. Все элементы G можно будет записать в виде 0 ≤ i < lk у 0 ≤ у< l, где 0 < i < lk и 0 < j< l.

Если бы две степени порождающих элементов совпадали, эта запись была бы не единственной. К примеру, если бы у3 равнялось х2, то х2у4 и х4у были бы двумя разными способами записи одного и того же элемента. Обозначим через t наименьшее целое положительное число такое, что уt совпадает с xs для некоторого целого s. Мы знаем, что t < I, так как уl = е = хlk.

132

В этой новой нотации каждый элемент G можно записать единственным образом в виде xiyj, где 0 < i < lk и 0 < j < t. В самом деле, если бы равенство xiyj = xiyj выполнялось для какого-либо 0< j' ≤ j < t, то мы получили бы хi'-i = уj-j', или, что аналогично, уj-j' было бы степенью х. Так как j’ — j строго меньше t, эта величина может равняться только нулю, следовательно, j = j' и i' = i, так как хi'-i = е при —lk < i' —i < lk.

  • Читать дальше
  • 1
  • ...
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: