Шрифт:
Оказалось, что некоторые задачи представляют определённые трудности даже для студентов-физиков, несмотря на то, что для решения этих задач, строго говоря, не требуется знаний, выходящих за рамки школьной программы как по физике, так и по математике.
Для третьего издания книга была частично переработана и дополнена в соответствии с современными тенденциями развития методов преподавания физики и с учётом действующей программы по физике для поступающих в вузы.
Авторы надеются, что книга окажется полезной для учащихся старших классов средней школы, профессионально-технических училищ и техникумов, а также для преподавателей и студентов вузов.
I. КИНЕМАТИКА
Кинематика изучает «геометрию» движения. Что мы под этим понимаем? «Геометрия» движения - это математическое описание движения тел без анализа причин, его вызывающих. Другими словами, без выяснения вопроса, почему рассматриваемое движение происходит именно так, а не иначе, устанавливается математическое соотношение между его различными характеристиками, такими как перемещение, пройденный путь, скорость, ускорение, время движения.
Движение материальной точки всегда рассматривается в какой-либо системе отсчёта. Положение материальной точки можно определить, если задать её радиус-вектор r или, что эквивалентно, три координаты x, y, z - проекции радиус-вектора на оси декартовой системы координат. Движение математически описано полностью, если известен радиус-вектор как функция времени r(t), т.е. известны три скалярные функции x(t), y(t), z(t). Например, для равномерного движения, т.е. движения с постоянной скоростью v, функция r(t) имеет вид
r(t)
=
r
+
vt
,
(1)
а для равнопеременного движения с ускорением a
r(t)
=
r
+
vt
+
at^2
2
.
(2)
В этих формулах r характеризует начальное положение точки, т.е. r=r(t)|t=0=r(0), v - начальная скорость.
Подчеркнём, что в кинематике ускорение считается заданным. Ускорение находится либо опытным путём, либо расчётным с помощью законов динамики, когда известны силы, определяющие характер движения. Забегая вперёд, отметим, что уравнение (1) описывает движение материальной точки в инерциальной системе отсчёта, если на точку не действуют силы (или все действующие силы уравновешиваются), а уравнение (2) - если действующие силы постоянны. В последнем случае говорят, что движение тела происходит в постоянном во времени однородном силовом поле. Примером такого поля может служить поле тяготения вблизи поверхности Земли при условии, что высота тела над поверхностью мала по сравнению с радиусом Земли. Разумеется, движение тела вблизи поверхности Земли описывается уравнением (2) только тогда, когда можно не учитывать сопротивление воздуха.
Итак, функция r(t) содержит полную информацию о кинематике движения тела, т.е. ответ на любой вопрос в кинематических задачах можно получить, используя только зависимость r(t). Никаких других физических законов при этом привлекать не требуется. Например, зависимость мгновенной скорости точки от времени в однородном поле может быть получена из соотношения (2) дифференцированием радиус-вектора по времени и имеет вид
v(t)
=
v
+
at
.
При решении задач мы будем записывать уравнение (2) непосредственно в проекциях на оси координат. При постоянном ускорении a всегда можно выбрать систему координат таким образом, чтобы векторное уравнение (2) сводилось к двум скалярным: так как траектория, по которой движется тело, плоская, то нужно просто совместить, например, плоскость x, y с плоскостью, в которой лежит траектория. Тогда векторное уравнение (2) эквивалентно двум скалярным уравнениям
x(t)
=
x
+
v
x
t
+
axt^2
2
,
y(t)
=
y
+
v
y
t
+
ayt^2
2
.
(3)
В частности, если рассматривать движение тела вблизи поверхности Земли под действием только силы тяжести, то удобно направить ось y вертикально вверх. Тогда вектор ускорения имеет только одну отличную от нуля проекцию: ax=0, ay=-g, и система (3) принимает вид
x(t)
=
x
+
v
x
t
=
x
+
v
cos ·t
,
y(t)
=
y
+
v
y
t
–
gt^2
2
=
y
+
v
sin ·t
–
gt^2
2
,
(4)
где - угол, образованный вектором начальной скорости с горизонтом. Иногда удобно поместить начало координат в начальную точку траектории, тогда x=y=0.
При равномерном движении материальной точки по окружности скорость изменяется только по направлению, оставаясь неизменной по модулю. Ускорение при этом направлено к центру окружности перпендикулярно скорости, т.е. по нормали к траектории, и равно по модулю
a
=
v^2
R
,
(5)
где R - радиус окружности. Эта же формула справедлива и при движении точки с постоянной по модулю скоростью v по произвольной криволинейной траектории. В этом случае R есть радиус кривизны траектории в рассматриваемой точке. Ускорение при этом направлено к центру кривизны, т. е, перпендикулярно скорости, направленной по касательной к траектории. Если же скорость меняется по модулю, то у вектора ускорения кроме нормальной составляющей, даваемой той же формулой (5), будет ещё составляющая, направленная по вектору скорости или против него, в зависимости от того, увеличивается или уменьшается скорость движущейся материальной точки.
Решение кинематической задачи сводится к использованию указанных выше уравнений в конкретных условиях, сформулированных в задаче. При этом было бы наивно пытаться овладеть каким-то «общим методом» решения, пригодным для всех задач; подобного «общего метода» попросту не существует. Наоборот, на приводимых примерах читатель может убедиться, что всегда существует несколько более или менее различающихся между собой подходов к исследованию физических явлений.
Разные подходы нередко оттеняют новые стороны изучаемого явления, позволяя глубже проникнуть в его физический смысл. Поэтому в большинстве разбираемых задач приводятся различные варианты решения.