Шрифт:
Таким образом, в звёздных фотосферах существуют конвективные зоны, обусловленные частичной ионизацией водорода. В этих зонах температурный градиент является адиабатическим.
Глубина, на которой начинается конвективная зона, для разных звёзд различна. У звёзд класса A тонкая конвективная зона расположена в поверхностных слоях. В фотосфере Солнца эта зона начинается на оптической глубине в видимой части спектра порядка 2. При переходе к более холодным звёздам главной последовательности глубина залегания конвективной зоны и её толщина увеличиваются.
Так как конвективная зона в солнечной фотосфере находится на сравнительно небольшой оптической глубине, то она может влиять на некоторые наблюдаемые характеристики Солнца. Согласно Зидентопфу существованием конвекции объясняется самый вид поверхности Солнца, а именно, так называемая грануляция, т.е. зернистая структура поверхности. При этом гранула отождествляется с конвективной ячейкой, в которой нагретое вещество поднимается вверх (а в промежутках между гранулами стекает вниз).
Как показывают наблюдения, размеры гранул составляют в среднем 500 км, а их средняя продолжительность жизни равна приблизительно 8 минутам. Грубые теоретические оценки этих величин приводят примерно к таким же значениям. Эти оценки основываются на представлении о том, что в атмосфере с градиентом плотности конвективные элементы должны иметь диаметры того же порядка, что и локальная высота однородной атмосферы. Поднимаясь, конвективные элементы адиабатически расширяются и сливаются с другими элементами. Вместо них образуются новые элементы меньших диаметров (так как высота однородной атмосферы уменьшается при переходе к более внешним слоям Солнца). Такая картина развития грануляции подтверждается кинематографированием поверхности Солнца.
С конвекцией тесно связано ещё одно важное явление в атмосфере Солнца — её колебания (или пульсации). Наиболее отчётливо выражены колебания с периодом около 5 минут и со скоростями порядка 0,5 км/с. Причину этих колебаний видят в акустических волнах, возникающих в конвективной зоне.
3. Солнечные пятна.
На диске Солнца временами наблюдаются тёмные образования — солнечные пятна. Линейные размеры пятен доходят до 100 000 км. Продолжительность их существования весьма различна: от нескольких часов до нескольких месяцев. Каждое пятно состоит из более тёмного ядра (или тени) и более светлой каймы, называемой полутенью. Однако пятна кажутся тёмными лишь вследствие контраста с фотосферой; на самом деле они весьма горячие. Эффективная температура пятна порядка 4 500 K (а эффективная температура фотосферы, как известно, равна 5 785 K). Спектр пятна относят к классу K0, в то время как спектральный класс фотосферы есть G2.
Спектроскопическое изучение пятен позволило сделать вывод о движении газа в них. Скорости этого движения — порядка 2 км/с в области полутени. При этом в нижних слоях пятна вещество из него вытекает, а в верхних — в него втекает (эффект Эвершеда). Принимая во внимание существование таких потоков газа, можно было бы думать, что в пятне происходит в основном конвективный перенос энергии. Однако в действительности в пятне, как и в фотосфере, главную роль в переносе энергии играет лучеиспускание. К такому выводу приводит сравнение теоретических и наблюдательных данных об интенсивности излучения, выходящего из пятна. В пятне (как и вообще в фотосферах холодных звёзд) поглощение света производится в основном отрицательным ионом водорода. Поэтому приближённо можно считать, что в видимой части спектра коэффициент поглощения не зависит от длины волны, и интенсивность излучения, выходящего из пятна, в случае лучистого равновесия определяется формулой (4.39). Эта формула даёт: 1) распределение энергии в спектре пятна при заданном угле , 2) изменение интенсивности излучения данной частоты при изменении положения пятна на диске Солнца. Значения интенсивности излучения I(0,), вычисленные по формуле (4.39), находятся в удовлетворительном согласии с результатами наблюдений пятен. Однако при допущении о конвективном равновесии пятна согласие между теорией и наблюдениями отсутствует.
Физические условия в пятнах изучаются такими же методами, как и условия в звёздных атмосферах. В частности, применяется построение кривых роста и анализ профилей спектральных линий. В результате определяется степень возбуждения и ионизации атомов, электронная концентрация, скорости движения газов и другие характеристики пятен.
Наиболее важной особенностью солнечных пятен является присутствие в них магнитных полей. Пятен без поля не наблюдается. Более того, слабые магнитные поля иногда обнаруживаются до появления пятна в данном месте фотосферы (или через некоторое время после его исчезновения).
Исследование магнитных полей пятен производится на основе наблюдения эффекта Зеемана, представляющего собой расщепление спектральных линий в магнитном поле. Картина расщепления зависит от угла между направлением поля и лучом зрения. Обычно магнитные поля пятен перпендикулярны к солнечной поверхности. Поэтому для пятна в центральной части диска имеет место продольный эффект Зеемана. В этом случае линия расщепляется на две поляризованные по кругу составляющие, отстоящие от нормального положения линии на величину
=
4,7·10
g^2H
,
(15.18)
где длина волны выражена в сантиметрах, напряжённость поля H в эрстедах и g — множитель Ланде. Определение напряжённости магнитных полей пятен при помощи формулы (15.18) приводит к значениям порядка нескольких сотен и тысяч эрстед.
В большинстве случаев зеемановские компоненты линии не наблюдаются в отдельности, а сливаются между собой, т.е. при наличии магнитного поля линия расширяется. При этом происходит увеличение эквивалентной ширины для линий средней интенсивности, вследствие чего кривая роста поднимается в её «пологой» части. По кривой роста для пятен может быть оценена напряжённость магнитного поля.
Для подробной интерпретации спектров солнечных пятен необходима теория образования линий поглощения в магнитном поле. Эта теория разрабатывалась во многих исследованиях, причём в некоторых из них при довольно общих предположениях (в частности, при учёте некогерентности рассеяния света).
Причина образования солнечных пятен не вполне ясна. Несомненно, их появление связано с возникновением в глубине конвективной зоны магнитных полей, которые каким-то образом выносятся наружу. Как известно, плотность магнитной энергии равна H^2/(8). В глубоких слоях эта энергия меньше энергии конвективного движения 1/2 v^2 и магнитное поле не препятствует конвекции. Но в наружных частях пятен имеет место обратное неравенство, т.е.