Шрифт:
Все живые организмы на земле, в том числе и человек, получают и увеличивают свою исходную ОНГ и энергию от солнца. Солнце само работает против увеличения ОЭ земли тем, что посылает непрерывно энергию в строго опреде-лённых пределах частоты и интенсивности (ОНГ). Меха-низмы антиэнтропийных процессов в космосе, особенно прев-ращения гравитационных сил, требуют более подробного изу-чения. Живые организмы на земле используют солнечную энергию для увеличения своей ОНГ и для непрерывной борь-бы с ОЭ. В то же время увеличивается ОЭ окружающей среды.
Но живые организмы не единственные системы, которые ведут "борьбу" с ОЭ. Пассивно сопротивляются увеличению ОЭ все системы в универсуме, в том числе неживые. Любые участки вещества, поля или волн, атомы или их ядра, имеют структуру, тем самым обладают ОНГ, которая в опре-делённых условиях своей инерцией противодействует раз-рушению и увеличению ОЭ, общему стремлению к бес-порядку, хаосу, неопределённости.
В общем: все системы в универсуме сопротивляются, соответственно их силе и возможностям, тенденциям уве-личения ОЭ.
Возникает вопрос о происхождении ОНГ в системах. ОНГ возникла путём непрерывного развития систем от микромира до самых высоких уровней - разума и общества. Крайне важно сформулировать и использовать общие законо-мерности развития ОНГ, её "борьбы" с ОЭ во всех системах универсума.
Движущими силами всех процессов в мире являются четыре известные силы (в скобках вызываемые ими про-цессы): гравитационные (информационные, ОНГ), электро-магнитные (энергообмен), сильное и слабое взаимодействие (структурообразование вещества на микроуровне). В наи-более тонкой микроструктуре - ниже шкалы Планка 10-35 м, эти силы объединяются в объединённое поле, которое носит разные названия: вакуум, квантовое поле, суперполе, супер-симметрическая супергравитация. Поскольку в этой сверх-микрообласти (меньше 10-35 м) предполагается отсутствие свойств пространства, времени и причинности, то системы имеют нам пока малоизвестные формы. Можно предполагать, что гравитационные силы (в объединении с другими) дейст-вуют и там, следовательно существует и ОНГ. Нет сомнения в том, что это поле вибрирует, т.е. его свойства флуктуируют, колеблются по случайным закономерностям вокруг средних. Свидетельством этого является появление виртуальных частиц (например электронов или квантов света) в абсолютном ва-кууме. В местах максимальной флуктуации плотность поля превышает пределы возникновения кванта (вещества, энер-гии) и возникают исходные образования - кванты вещества и энергии. Кванты уже имеют некоторые признаки системы, они могут избирательно взаимодействовать со средой. Во первых они имеют минимальное гравитационное поле, т.е. спо-собность притягивать к себе дополнительные элементы поля и ОНГ. Кванты энергии не являются только энергией вообще, которая характеризуется только количеством. Квант - это элементарная система, которая имеет свои характерные приз-наки, функции, несмотря на то, что пока неизвестны его сос-тавные элементы. В общем, каждый квант содержит не толь-ко энергию и массу, но и ОНГ, он стремится сохранить свою целостность, т.е. борется с ростом ОЭ.
Схематически можно возникновение элементарных и принцип действия более сложных систем изобразить сле-дующим образом:
Энергия Ї Информация Ї Система функцио-нирует по прин-ципу минимальФункции ?????R ?????? Структура ОНГ ного роста ОЭ. Энергия и инфор-мация принима
ж г Уплотнение объединён-ного поля д е ются избиратель-но по критериям повышения ОНГ и устойчивости системы. Флуктуации Ї ОЭ
Уже элементарная система может, в благоприятных ус-ловиях, дифференцированно поглощать энергию, информа-цию и эквивалентную с ними вещество и использовать их для повышения своей ОНГ. Вместе с ростом ОНГ повышаются и притягивающие силы и возможности комбинации системы с другими системами. Дальше следовало развитие иерархии систем от квантов к кваркам, атомам, молекулам, неоргани-ческим, дальше живым веществам, организмам, человеку и обществу. При этом резко усложняются, дифференцируются все функции и элементы структуры системы, появляются до-полнительные органы и механизмы управления, получения и обработки информации. Однако, вышеприведенная универ-сальная схема функционирования остаётся неизменной для всех систем универсума, так же как и для самого универсума. Для всех систем универсума (в том числе для мысленных моделей) обязательными свойствами являются структура, функции, флуктуация и обмен со внешней средой. Флукту-ацией обусловлены сдвиги равновесия на микроуровне, которые при длительных действиях оказывают влияние на макроуровень.
Определение качества ОНГ
Задача определения качества ОНГ из-за её много-мерности и зависимости от ОЭ, представляет сложную проб-лему. При этом необходимо учесть потребности и шкалу цен-ностей приёмника информации, его инструктивные свойства, степень неизбыточности и незаменимости информации, крите-рии цели и ценности (полезности). ОНГ рассчитывают в абсолютных единицах по разности ОЭ принимающей системы до и после получения информации (ОНГ = ОЭдо - ОЭпосле). Однако, абсолютная величина не полностью показывает цен-ность ОНГ для системы-приемника, так как начальная вели-чина ОЭ может при инфоприёме изменяться. ОНГ не пока-зывает, сколько в процентах устраняется неопределённость системы. Поэтому целесообразно выразить качество ОНГ в %-нтах от средней ОЭ системы: d = ОЭдо - ОЭпосле . 100.
ОЭср
Коэффициент полезного действия при передаче инфор-мации. Часть информации теряется из-за рассеяния или шума в канале. Информация относительно события В в системе 1, содержащаяся в событии А в другой системе 2:
J (A, B) = ОЭ1(В) - ОЭ1(В / А)
Однако, из-за рассеяния (шума) в канале событие А пе-редаётся в систему 1 только частично (А*). Тогда коэффи-циент полезного действия при передачи информации K = ОЭ1(В) - ОЭ1(В / А*)
ОЭ1 (В) - ОЭ1(В / А)
Коэффициент увеличения ОЭ при инфопередаче сос-тавляет: Kэ = ОЭ1(В / А*)
ОЭ1(В / А)
где: A - отправленная от системы 2 информация о событии А A* - то же, принятая в системе 1 B - событие или цель в системе 1 (приёмнике).
Общая схема: ? ОЭ (В) - ОЭ (В / А) ? ???????????????R ? ? ?ОЭ(В)ОЭ(В/А*) ? ? ?????????R ? 0 ?ОЭ (В / А) ?ОЭ (В / А*) ? ОЭ(В) Энтропия ?????- ? ????? ??????????- ??????????R ? ОЭ (В/А) ? ? ? ????R ? ? ?ОЭ (В/А*) ? ? ??????????-?R ?
ОБЩИЕ ПРИНЦИПЫ ИНФОДИНАМИКИ
Поскольку ОНГ в системах и инфопередача между ними существуют объективно, то возникают вопросы о закономер-ностях их движения, развития, взаимоотношении, обработки, хранения, применения и рассеяния. В любой системе в результате флуктуации возникают локальные неравновесные участки, неоднородности распределения ОЭ. В неравновесных участках возникают потоки информации, которые самопроиз-вольно переидут всегда с участка, обладающей большей ОЭ, в участок с меньшей ОЭ (или большей ОНГ). Неравновес-ность есть то, что порождает порядок из хаоса.
С другой стороны ОНГ можно рассматривать в форме эквивалентного количества энергии и соответственно она должна подчиняться законам термодинамики. Только в слу-чае исследования инфопередач их терминология несколько изменяется. Но закон роста ОЭ в изолированной системе останется так же неколебимым как в энергетике. Контро-лировать изолированность системы от инфообмена значительно труднее, чем от энергообмена.
Применение некоторых общих терминов как в инфо-динамике, так и в кибернетике заставляет более чётко обосно-вать необходимость выделения новой науки - инфодинамики. Кибернетика занимается в основном процессами управления и передачи управленческих сигналов. Управление является од-ной из высших форм регуляции и оптимизации систем. Од-нако, последние операции могут осуществлятся также по-средством других механизмов, например, путём динами-ческого взаимодействия между элементами или при функ-ционировании массовых каналов связи. В отличие от кибер-нетики инфодинамика занимается наиболее общими, универ-сальными закономерностями, действующими во всех систе-мах. Вместо общих понятий применяются обобщённые ОНГ и ОЭ. Последние принципиально отличаются от кибернетичес-ких понятий своей многомерностью, оптимальностью, что даёт им универсальность и повышенную содержательность.