Вход/Регистрация
Ключевые технологии и приемы использования щитовых проходческих комплексов при сооружении туннелей
вернуться

Хун Кайжун

Шрифт:

4.1. КОНСТРУКЦИЯ ТЮБИНГА

Как в отечественной, так и в международной практике при проектировании щитовых туннелей основное внимание уделяется безопасности, экономичности и применимости при монтаже. Проектирование тюбингов осуществляется как в поперечном, так и в продольном направлениях туннеля. Обычно проектирование в первом случае определяет поперечное сечение туннеля, а проектирование во втором – способность туннеля противостоять землетрясениям и оседанию основания. В данном разделе обобщаются и сравниваются методы проектирования, модели тюбинга, сейсмостойкость тюбинга и армирование тюбинга щитового туннеля.

4.1.1. Метод проектирования туннельного тюбинга

В настоящее время методы расчета внутренних усилий (расчет внутренней силы) для конструкций щитовых туннельных тюбингов в Китае включают метод эмпирической аналогии, метод предела сходимости, метод структурной нагрузки и метод стратиграфической структуры. Поскольку метод эмпирической аналогии не имеет теоретической базы и результатов расчета, он часто используется для оценки и дополнения других методов расчета. Тогда как принцип расчета метода предела сходимости все еще нуждается в дальнейшем исследовании и совершенствовании и часто используется для руководства строительством в сочетании с данными мониторинга строительной площадки. Метод стратиграфической структуры и метод структуры нагрузки являются теоретическими методами расчета с более строгой теоретической системой, а результаты расчета могут быть использованы для структурного проектирования и часто используются в качестве основы для проектирования. В соответствующих нормах проектирования в Китае для обычного проектирования рекомендуется метод структуры нагрузки, а в особых случаях для проверки можно использовать метод стратиграфической структуры.

В последние десятилетия метод расчета конструкции тюбинга для щитовых туннелей общего назначения среднего и малого диаметра (наружный диаметр туннеля D < 10 м) обычно основывается на нагрузке. Наиболее часто используемыми моделями являются однородная круговая модель, однородная круговая модель эквивалентной жесткости, упругая шарнирная круговая модель и двухкольцевая балка – модель пружины.

В модели однородного круга не учитывается снижение жесткости стыка тюбинговой части, и тюбинговая часть рассматривается как жесткое кольцо, а структурный анализ проводится напрямую. Грунтовые и водные нагрузки рассчитываются в соответствии с проницаемостью пласта как совместный расчет или расчет грунта и воды.

Вертикальное давление грунта определяется в зависимости от глубины туннеля и характера пласта с помощью полного давления вскрышного грунта или давления провисающего грунта, расчет давления провисающего грунта может быть рассчитан по формуле Тайшаджи, горизонтальное давление грунта рассчитывается в соответствии с вертикальным давлением грунта, умноженным на коэффициент бокового давления грунта. Вертикальная сила реакции основания определяется в соответствии с условием вертикального равновесия, а горизонтальная сила реакции основания рассматривается в диапазоне 45° выше и ниже центра конструкции в соответствии с законом распределения равнобедренного треугольника, и ее величина определяется в соответствии с горизонтальной деформацией, умноженной на коэффициент сопротивления основания. Эта модель возникла в Японии, поэтому ее называют общепринятой японской моделью.

Эквивалентная модель однородного кольца жесткости не учитывает напрямую существование стыков тюбинга при расчете и вводит коэффициент эффективности жесткости ? и изгибающий момент ? для отражения влияния кольцевых и продольных стыков тюбинга на внутреннюю силу, что является приблизительной упрощенной моделью конструкции щитовой обделки туннеля, где ? применяется для отражения влияния уменьшения жесткости кольцевой обделки из-за наличия стыков тюбинга, а ? – для отражения увеличения жесткости соседних колец обделки, поддерживаемых друг другом через межкольцевые стыки при ступенчатой сборке. Расчет нагрузки на грунт и воду и силы реакции основания в этой модели такой же, как и в однородной кольцевой модели. Для значений ? и ? в Японии после ряда экспериментов были даны рекомендуемые значения для различных диаметров и различных соединений, поэтому данная модель также называется доработанной японской моделью.

Модель упругошарнирного (многошарнирного) кольца моделирует соединение тюбинга как вращающуюся пружину с определенной жесткостью или непосредственно упрощенное сочленение без учета влияния каждого кольца между частями тюбинга. Само упругошарнирное (многошарнирное) кольцо является подвижной структурой, которая может быть стабилизирована только под действием реакции вмещающей породы, поэтому такая структура может быть использована только при относительно хорошем состоянии вмещающей породы. Кроме того, при использовании модели упругогошарнирного кольца точность расчета напрямую зависит от величины вращательной жесткости вращающейся пружины. Расчет нагрузки на грунт в этой модели в основном такой же, как и в однородной круговой модели, в то время как давление воды определяется в соответствии с высотой напора и затем направляется в центр формы трубчатого листа, а сопротивление грунта моделируется пружиной основания. Модель двухкольцевой балки-пружины использует вращающиеся пружины для моделирования соединений между каждым кольцом труб, а для туннелей, собранных со смещенными соединениями при моделировании кольцевых соединений используются радиальные и тангенциальные пружины сдвига. Моделирование стыковых соединений является более полным, также как и в модели упругого шарнирного кольца, точность результатов расчета модели двухкольцевой балки-пружины зависит от точности значения жесткости соединения. Расчет и моделирование нагрузок на грунт и воду и сопротивления пласта грунта в этой модели такие же, как и в модели упругого шарнирного кольца.

В последнее десятилетие появились щитовые туннели большого (D >= 10 м) и очень большого (D > 15 м) диаметра. Толщина обделки увеличивается с меньшей скоростью, чем диаметр туннеля, а количество продольных швов увеличивается из-за увеличения количества отрезков труб, жесткость на изгиб конструкции обделки щитовых туннелей большого и очень большого диаметра ниже, чем у щитовых туннелей малого диаметра. Для определения жесткости контура и продольных швов необходимо использовать расчетную модель на основе модельного испытания или испытания по следам, используя либо метод структуры нагрузки пружинной модели, либо стратиграфический метод.

Основной процесс проектирования поперечного сечения тюбинга в Японии показан на рис. 4-1. В таблице 4-1 показаны методы проектирования, используемые в других странах, кроме Японии. В таблице 4-2 приведено сравнение японского и немецкого методов проектирования тюбинга, которые можно использовать в качестве справочной информации.

Рис. 4-1. Основной процесс проектирования тюбингов

  • Читать дальше
  • 1
  • ...
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: