Ваховский Евгений Борисович
Шрифт:
Приведенное выше определение числа 2 этому требованию не удовлетворяет, ибо слова «то общее» нельзя считать родовым понятием — оно не очерчивает конкретное множество объектов.
Определения натурального числа и точки на первый взгляд имеют форму математических определений. Натуральное число было определено через более общее понятие числа, а точка — через более широкое понятие трехмерного геометрического объекта. Однако в этом случае возникает вопрос: что такое число и что такое трехмерный геометрический объект? Эти два понятия нельзя избрать в качестве базовых, ибо они слишком сложны, чтобы им можно было дать разумное интуитивное толкование. Понятие числа в математике достаточно изящно конструируется из понятия натурального числа путем последовательного расширения наших представлений о числе: вводятся отрицательные целые числа и нуль, рациональные числа, иррациональные числа. Точно так же понятие геометрического объекта предполагает большое разнообразие конкретных реализаций, конструируемых посредством определений из простейших, т. е. элементарных понятий, какими являются точка, прямая, плоскость. K тому же мы не обязаны ограничиваться рассмотрением только трехмерного геометрического пространства, в котором плоскость имеет два измерения, прямая — одно, а точка имеет нулевую размерность. Если мы решимся исследовать пространства четырех измерений и более, то размерности точки, прямой, плоскости останутся неизменными.
Приведем примеры того, как в математике определяют новые понятия (они набраны прописными буквами) и укажем в каждом из определений родовое понятие (полужирный шрифт) и видовое отличие (курсив).
ПАРАЛЛЕЛОГРАММ — четырехугольник, в котором две противоположные стороны равны и параллельны.
ТРАПЕЦИЯ — четырехугольник, в котором две противоположные стороны параллельны.
ЧЕТНЫЕ ЧИСЛА — натуральные числа, кратные числу 2.
РАЦИОНАЛЬНЫЕ ЧИСЛА — числа вида p/q, где p и q — целые числа, q /= 0.
Рассмотрите самостоятельно определения предела и производной.
У стандартных математических задач есть одно важное свойство: для их решения не требуется озарения. Нет необходимости долго размышлять над такой задачей в поисках подхода к ее решению. То, что обычно следует предпринимать, вообще говоря, известно заранее. Нужно только это разумно и эффективно осуществить.
Начинают обычно с перевода содержательных условий задачи на язык математических символов и соотношений. А когда это сделано, остается позаботиться об использовании всех условий задачи. Именно всех условий, ибо в правильно поставленной математической задаче лишних условий быть не может. Поэтому каждое из условий непременно должно быть использовано в процессе решения.
Часто спрашивают: обязательно ли стремиться к полной формализации условий задачи? Хотя среди преподавателей еще бытует такая традиция, делать это не только не обязательно, но часто и не нужно. Увлечение формальной записью может внешне неоправданно усложнить задачу, сделать ее трудно обозримой и даже отпугивающей. Соблюдать меру здесь очень уместно. А там, где появляется чувство меры, наука хотя бы частично уступает свои права искусству. Вот почему математики так высоко ценят изящные доказательства и с большой неохотой ведут длинные и монотонные выкладки. Увы, в реальной жизни без них не обойтись.
А теперь рассмотрим два простых примера.
Первый показывает, насколько результат обыденного мышления может расходиться с результатом, полученным математически.
Задача 1. На склад привезли 100 кг ягод влажности 99%. Ягоды полежали и усохли. Их влажность стала 98%. Сколько килограммов ягод стало после усушки? Ответ дать с точностью до 1 кг.
Последнее замечание неявно подсказывает неверный вывод: поскольку влажность стала на 1%-й пункт ниже, а всего было 100 кг, то и потери массы составили где-то около 1 кг (числа 100, 99 и 98 мало отличаются одно от другого). Такой вывод возникает как следствие применения при решении математической задачи неоправданной аналогии.
А теперь поступим так, как должен поступить математик.
Переведем условие задачи на математический язык. Ягод было 100 кг, а их исходная влажность равнялась 99%. Это означает, что сухого вещества в поступивших на склад ягодах было ровно 1 кг, а 99 кг составляла масса содержащейся в них воды. После усушки масса сухого вещества осталась прежней. Изменилась только масса воды. Но если вначале сухое вещество составляло 1% от общей массы ягод, то после усушки тот же 1 кг сухого вещества составил уже 2% от новой общей массы ягод. Это означает, что после усушки общая масса ягод стала всего 50 кг, так как 2% от 50 кг и есть 1 кг сухого вещества.
Задача была решена без какой-либо явной формализации, хотя вполне строго. Не составит труда предложить и ее формальное решение.
Обозначим через x массу ягод после усушки. (В условии задачи как раз и требуется найти численное значение x.) Тогда сухое вещество (а его масса равна 1 кг) составляет (100 - 98)%, т. е. 2% от x. Получаем уравнение
0,02 x = 1, или x = 1 : 0,02 = 50 (кг).
Утверждаю: математическая задача средней трудности, как правило, достаточно просто решается путем перевода ее содержательных условий на язык математических символов и соотношений и последующей заботой о том, чтобы каждое условие задачи было эффективно использовано. Трудности возникают, когда мы либо не умеем формализовать задачу, либо не знаем, как использовать какое-то из ее условий, либо недостаточно знакомы с необходимыми для ее решения положениями теории.
Приведем пример еще одной задачи, на этот раз геометрической, решение которой находится сразу, как только правильно использованы все ее условия.