Ваховский Евгений Борисович
Шрифт:
1.19. Углы С, A, В треугольника ABC образуют геометрическую прогрессию со знаменателем 2. Пусть O — центр окружности, вписанной в треугольник ABC, K — центр вневписанной окружности, касающейся стороны AC, L — центр вневписанной окружности, касающейся стороны BC. Докажите, что треугольники ABC и OKL подобны.
1.20. В треугольнике ABC углы A, В и С образуют геометрическую прогрессию со знаменателем 2. Докажите, что
1.21. Докажите, что если P, Q, R — соответственно точки пересечения каждой из сторон BC, CA, AB (или их продолжений) треугольника ABC с некоторой прямой, то
(теорема Менелая).
1.22. Точка D находится на стороне BC треугольника ABC. Докажите, что
AB^2 · DC + AC^2 · BD - AD^2 · BC = BC · DC · BD
(теорема Стюарта).
1.23. На сторонах треугольника ABC взяты точки P, Q и R так, что три прямые AP, BQ и CR пересекаются в одной точке. Докажите, что
(теорема Чевы).
1.24. Через произвольную точку O, взятую внутри треугольника ABC, проведены прямые DE, FK, MN, параллельные соответственно AB, AC, BC, причем F и M лежат на AB, E и K — на BC, N и D — на AC. Докажите, что
1.25. Через центр O правильного треугольника ABC проведена произвольная прямая. Докажите, что сумма квадратов расстояний от вершин треугольника до этой прямой не зависит от выбора прямой.
1.26. Вокруг треугольника ABC, в котором а = 2, b = 3 и угол C = 60°, описана окружность. Определите радиусы окружностей, проходящих через две вершины треугольника и центр описанной окружности.
1.27. Стороны треугольника связаны соотношением а^2 = c(b + с). Докажите, что угол A вдвое больше угла C.
1.28. Пусть O — центр окружности, вписанной в треугольник ABC. Докажите, что если OA^2 = OB · OC, то
1.29. Площадь , треугольника ABC удовлетворяет соотношению S = а^2 - (b - с)^2. Найдите угол A.
1.30. На сторонах треугольника внешним образом построены квадраты. Докажите, что расстояние между центрами квадратов, построенных на боковых сторонах, равно расстоянию от центра квадрата, построенного на основании, до противоположной вершины треугольника.
1.31. В треугольнике ABC единичной площади проведен отрезок AD, пересекающий медиану CF в точке M, причем FM = 1/4 CF. Найдите площадь треугольника ABD.
1.32. Докажите, что произведение диагоналей вписанного четырехугольника равно сумме произведений противоположных сторон (теорема Птолемея).
1.33. Отрезок, соединяющий середины оснований трапеции, равен их полуразности. Найдите сумму углов при большем основании трапеции.
1.34. Через центр квадрата ABCD проведена прямая, пересекающая сторону AB в точке N, причем AN : NB = 1 : 2. На этой прямой взята произвольная точка M, лежащая внутри квадрата. Докажите, что расстояния от точки M до сторон квадрата AB, AD, BC и CD, взятые в названном порядке, образуют арифметическую прогрессию.