Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

1.35. Квадрат и правильный треугольник, имеющие общую вершину, вписаны в окружность единичного радиуса. Найдите площадь, покрытую и квадратом и треугольником.

1.36. В окружность вписаны равнобедренный остроугольный треугольник площадью S, и трапеция так, что ее большее основание совпадает с диаметром окружности, а боковые стороны параллельны боковым сторонам треугольника. Средняя линия трапеции равна l. Найдите высоту трапеции.

1.37. Найдите отношение площади трапеции ABCD к площади треугольника AOD, где O —точка пересечения диагоналей трапеции, если известно, что

.

1.38. Два правильных многоугольника с периметрами a и b описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют каждый вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.

1.39. Внутри угла AOB, меньшего , дана точка M, находящаяся на расстоянии а от вершины угла. Отрезок ОМ образует углы и со сторонами угла AOB. Найдите радиус R окружности, проходящей через M и отсекающей на сторонах угла AOB хорды, равные 2а.

1.40. Из внешней точки A проведены две взаимно перпендикулярные секущие ABD и ACE к окружности с центром O. Площади треугольников ABC и АDЕ относятся как m : n. Определите величины дуг BC и DЕ, каждая из которых меньше полуокружности.

1.41. Из точки А, лежащей на окружности радиуса r, проведены две хорды AC и AB. Эти хорды лежат по одну сторону от диаметра окружности, проходящего через точку А. Длина большей хорды равна b, а угол ВАС равен . Найдите радиус окружности, которая касается хорд AB и AC и дуги BC.

1.42. Даны две концентрические окружности радиусов R и r (R > r). Найдите сторону квадрата, две вершины которого лежат на одной окружности, а две другие — на другой. При каком соотношении между радиусами данных окружностей решение задачи возможно и при каком соотношении задача имеет единственное решение?

1.43. В сегмент, дуга которого содержит 120°, вписан квадрат. Определите сторону квадрата, если радиус R круга равен 2 + 19 .

1.44. У равнобочной трапеции с большим основанием а и острым углом высота вдвое меньше меньшего основания. На меньшем основании, как на диаметре, построена окружность. Найдите радиус окружности, касающейся построенной окружности, большего основания и боковой стороны.

1.45. AB и CD — два взаимно перпендикулярных диаметра окружности S1. С центром в точке D радиусом BD построена окружность S2. Из точки D проведены две прямые, пересекающие окружность S1 в точках P и Q и дугу AB окружности S2, заключенную внутри окружности S1, в точках M и N. Точки P и Q спроецированы на AB; P1 и Q1 соответственно — их проекции. Докажите, что фигура RMNQ равновелика треугольнику P1Q1D.

1.46. Через точку P, лежащую вне окружности с центром O и радиусом R, проходят две взаимно перпендикулярные секущие. Первая секущая пересекает окружность в точках А и С (точка С лежит между P и А), а вторая секущая — в точках В и D (D лежит между P и В). Пусть Р1 — проекция P на AB, а M — одна из точек пересечения AB с окружностью, центр которой Р1, а радиус Р1О. Найдите длину МР.

1.47. Найдите угол между двумя хордами, пересекающимися внутри окружности, если точка их пересечения удалена от центра окружности на 3/5 ее радиуса и делит одну хорду пополам, а другую — в отношении 4 : 9.

1.48. Дан сектор ОАВ (O — центр) с центральным углом в 90° и радиусом R. На отрезке ОВ, как на диаметре, построена полуокружность, лежащая внутри сектора. Найдите радиус окружности, касающейся этой полуокружности и отрезков ОА и AB.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: