Ваховский Евгений Борисович
Шрифт:
9.9. Перенести
9.10. Чтобы избавиться от знаков абсолютной величины, можно поступить двояко: либо потребовать, чтобы правая часть уравнения была неотрицательной, и решить уравнения
x^2 - 3x/2– 1 = -x^2 - 4x + , x^2 - 3x/2– 1 = x^2 + 4x– ;
либо рассмотреть два случая: в первом выражение, стоящее под знаком абсолютной величины, неотрицательно, а во втором — отрицательно.
9.11. Рассмотреть различные случаи расположения x и у по отношению к нулю (всего придется рассмотреть четыре случая). (!)
9.12. Решить систему уравнений с параметром k, а затем решить систему неравенств. (!)
9.13. Рассмотреть различные случаи взаимного расположения чисел x и у и чисел x и -у. Это позволит раскрыть знаки абсолютной величины. (!)
9.14. Второе уравнение — уравнение окружности радиуса а . Нарисовать кривую, которая определяется первым уравнением.
9.15. Одно решение очевидно: x = у = 0. Если ху /= 0, то можно разделить первое уравнение на ху, а второе на x^2у^2.
9.16. Если бы во втором и третьем уравнениях не было коэффициентов 2 и 3, то уравнения системы получались бы друг из друга с помощью циклической перестановки неизвестных x, у и z. Однако влияние коэффициентов оказывается столь сильным, что попытка использовать это свойство системы не приводит к успеху. Попытайтесь преобразовать систему в распадающуюся, для чего потребуется отыскать алгебраическое выражение, общее для двух уравнений, и исключить его.
9.17. Если первое уравнение системы записать в виде x + у = -z и возвести в квадрат, то с помощью второго ее уравнения можно найти ху.
9.18. Сопоставьте первое и последнее уравнения. Если записать их в виде
x + у = 1 - z, х^3 + у^3 = 1 - z^3,
то напрашивается способ, с помощью которого можно преобразовать систему в распадающуюся.
9.19. Если раскрыть скобки, то получим систему линейных уравнений относительно u = x + у + z, v = ху + xz + yz, w = xyz. Найдя u, v и w, можно вычислить х^3 + у^3 + z^3, если возвести x + у + z = u в куб: u^3 = х^3 + у^3 + z^3 + 3uv– 3w.
Однако такой путь решения, хотя и прост по идее, требует значительных выкладок. Решение можно упростить, если ввести в рассмотрение многочлен M(t) = (t– x)(t– у)(t– z) + а, который в силу условия задачи имеет корни t = а, t = b, t = с.
9.20. Первые два уравнения системы симметричны относительно x и у. Нужно использовать эту симметрию для того, чтобы получить одинаковые правые части у этих двух уравнений.
9.21. Если второе уравнение возвести в квадрат, то можно сравнить два выражения для (x + у)^2. (!)
9.22. В первое уравнение входит у, в последующие уt, yt^2 и yt^3 соответственно. Эта закономерность позволяет исключить у.
9.23. Каждый элемент, стоящий в левой части второго уравнения, получается из соответствующего элемента, стоящего в левой части первого уравнения, возведением в квадрат. Нужно использовать это свойство системы.
9.24. Левые части всех трех уравнений симметричны относительно x, у, z. Поэтому, подвергнув какому-то преобразованию любые два уравнения системы, разумно сделать то же самое и с оставшимися двумя парами уравнений.