Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

9.25. Если известна сумма s = x1 + x2 + ... + xn, то из каждого уравнения можно найти соответствующее xk.

9.26. Чтобы избежать возведения двучлена в третью и, тем более, в пятую степень, нужно ввести новые неизвестные так, чтобы выражение 7x– 11у было одним из этих неизвестных.

9.27. Поскольку

 входит в оба уравнения с разными знаками, а у — с одинаковыми, то естественно сложить данные уравнения и вычесть. При этом мы приходим к системе, у которой слева стоят сумма и разность одинаковых радикалов, а справа — разные радикалы.

9.28. Чтобы левые части уравнений стали однородными относительно неизвестных, удобно ввести новое неизвестное z = у.

9.29. Если каждое из уравнений возвести в квадрат, то получим систему относительно u = x^2 и v = у^2. Проверка здесь может оказаться довольно сложной, поэтому целесообразно следить за равносильностью в процессе решения. Чтобы в результате возведения в квадрат не появились посторонние решения, достаточно записать ограничения: x > 0, у > 0.

9.30. Все члены системы, содержащие x и у, однородны второй степени относительно x и у. Пусть данная система имеет решения x1, у1, z1 Укажите симметричное решение, которое наряду с этим будет иметь система.

9.31. Поскольку вместе с условием x + у = 0 мы получаем три уравнения с двумя неизвестными, то имеет смысл воспользоваться подстановкой у = -x.

9.32. Поскольку данная система должна иметь решение при любом b, то, чтобы сузить область допустимых значений а, можно рассмотреть эту систему при некотором фиксированном b.

9.33. Вначале нужно использовать условие, что система должна иметь только одно решение. Второе уравнение можно рассматривать как четную функцию относительно x и у, т. е. наряду с решением x = x1, у = у1 оно имеет три симметричных решения: (-x1, у1), (x1, -у1), (-x1, -у1). Какое из этих решений наряду с (x1, у1) будет удовлетворять первому уравнению?

9.34. Второе уравнение можно преобразовать к виду

умножив числитель и знаменатель дроби на выражение, сопряженное знаменателю. Легко убедиться, что у /= 0. Поэтому можно полученное уравнение разделить на у, после чего нетрудно с помощью первого уравнения системы исключить

9.35. Представить уравнение в виде

|6 - |x– 3| - |x + 1|| = а(x + 5) + 4,

построить график функции, стоящей в левой части равенства, и рассмотреть поведение относительно этого графика прямой у = а(x + 5) + 4 при разных значениях а.

9.36. Обе части нужно возвести в квадрат. Чтобы обеспечить равносильность, в системе с полученным уравнением придется решать неравенство 4x^2 - 3аx >= 0. При этом выражение под вторым радикалом автоматически будет неотрицательным.

В задачах с параметрами, как правило, нарушать равносильность нецелесообразно. Рассуждения, связанные с ОДЗ, не дают строгого решения.

9.37. x = 0 — корень уравнения. Выражения в знаменателях имеют одинаковую составляющую 5x^2 + 6.

9.38. Это система однородных уравнений, и она решается стандартной подстановкой x + у = u, xу = v.

  • Читать дальше
  • 1
  • ...
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: