Ваховский Евгений Борисович
Шрифт:
Для треугольника DА1E применить метод сравнения площадей.
3.31. Рассмотреть треугольник, образованный высотой тетраэдра, одним из боковых ребер и проекцией этого ребра на плоскость основания, а также подобный ему треугольник, в котором участвует искомый радиус.
3.32. Из всех подобных кубов с центром в точке О удобно выбрать тот, вершина которого, противоположная точке О, лежит на грани параллелепипеда.
3.33. Пусть разность между углами А и С равна , а ВD — биссектриса угла В (рис. II.3.33). Легко показать, что = /2 + /2. Затем удобно представить площадь треугольника АВС как сумму площадей треугольников АDВ и ВDС.
3.34. Расстояние между диагоналями С1D и В1С (рисунок сделайте сами) равно расстоянию между плоскостями А1C1D и АВ1С.
3.35. Основание перпендикуляра, опущенного из точки K на диагональ куба, обозначим через О1. Для треугольника OKO1 можно воспользоваться свойством отрезков, на которые биссектриса делит сторону основания.
3.36. Перемещая взаимно перпендикулярные плоскости параллельно самим себе, мы не изменим проекции четырехугольника. Поэтому разместим одну из плоскостей так, чтобы она проходила через вершину четырехугольника (рис. II.3.36; эта вершина обозначена буквой А). Чтобы построить прямую, по которой пересекаются плоскости АВСD и АВ1С1D1, найдем точку E, в которой пересекаются BC и В1С1. Теперь можно измерить угол между плоскостями АВСD и АВ1С1D1, построив ВF ЕА и соединив В1 с F. Угол ВFВ1 равен 45°.
3.38. Найти связь между радиусами шаров и величинами H, и p можно, рассмотрев осевое сечение конуса.
3.39. Если рассмотреть осевое сечение обоих конусов, то задача станет плоской. Чтобы связать радиусы оснований конусов, в качестве вспомогательной величины удобно выбрать радиус сферы.
3.40. Сделав аналогичные построения для второй сферы, можно будет заключить, что, во-первых, треугольник О1ВО2 равнобедренный и, во-вторых, SB — высота пирамиды, объем которой мы ищем. (!!)
Так как BC (постройте этот отрезок на рис. I.3.40) (см. с. 129) — сторона основания правильной пирамиды, то можно доказать, что отрезок прямой EO1 является в треугольнике BEC одновременно медианой и биссектрисой. Это может оказаться полезным при вычислениях.
3.41. В осевом сечении, проходящем через О1 и О3, получим картину, изображенную на рис. II.3.41. Все стороны треугольника О1О3О5 нам известны (О1О3 легко найти из рис. I.3.41) (см. с. 129). Остается определить SD и AD.
3.42. Треугольники ASD и EMK подобны, т. е. углы SAD и MEK равны. Котангенс угла SAD нам известен, так как AD = a, SD = h. (!!)
Из треугольника SDC можно найти радиус основания цилиндра, а затем из треугольника EMK определить EK.
3.43. Рассмотреть подобные треугольники SOA и SO1B, где О1 — центр куба, а B — одна из вершин диагонального сечения куба, параллельного плоскости основания конуса. Это позволит найти одно соотношение между ребром куба а, высотой конуса H и радиусом его основания R (рис. II.3.43). (!!)
Второе соотношение между H, R и а можно будет найти, рассмотрев вторую пару подобных треугольников: SO1B и SO2C. Здесь О2 — середина верхнего ребра куба, а C — одна из вершин этого ребра. Имея в распоряжении два уравнения, можно выразить R и H через а и тем самым решить задачу.