Вход/Регистрация
Сборник задач по математике с решениями для поступающих в вузы
вернуться

Ваховский Евгений Борисович

Шрифт:

4.11. Если вместо куба, нижнее основание которого образует с плоскостью острый угол , оставить фигуру А1В1D1DВС, образованную двумя треугольниками A1B1D1, ВСD и диагональным сечением В1D1DB куба, то отбрасываемая на плоскость тень не изменится. Остается выразить площадь тени через ребро куба и угол .

K главе 5

5.2. В треугольнике АМВ рассмотреть медиану, выразить ее квадрат через стороны треугольника, воспользоваться полученными ранее соотношениями. (!!)

Доказать, что медиана МС равна AB.

5.3. Косинус угла А, участвующий в теореме косинусов, можно определить из треугольника АМО, где О — центр окружности, о которой идет речь в условии задачи. (!!)

Обратное утверждение можно доказывать в такой форме: если AC = 2ВС и 2АМ^2 + МВ^2 = АВ^2, то АО = МО. Здесь тоже естественно воспользоваться теоремой косинусов для треугольника АМВ. Единственное осложнение возникает из-за необходимости выразить cos А через линейные элементы. Можно поступить иначе: записать теорему косинусов для треугольника АМО, имеющего с АМВ общий угол А, и исключить cos А.

5.4. Два треугольника АМВ и ВМС, имеющие общую сторону ВМ, равновелики тогда и только тогда, если их высоты, опущенные из вершин А и С на общую сторону ВМ, равны.

Задача свелась к построению прямой, проходящей через точку В и равноудаленной от двух данных точек А и С. (!!)

Существуют две и только две прямые, проходящие через точку В и равноудаленные от точек А и С: одна — параллельная AC, другая проходит через середину AC.

5.5. Если прямые AB и CD пересекаются в точке N, то отрезки AB и CD следует перенести в эту точку, двигая каждый по своей прямой. После этого задача сведется к предыдущей (см. задачу 5.4). (!!)

Если прямые AB и CD параллельны, то отрезки AB и CD удобно расположить так, чтобы их центры лежали на общем перпендикуляре. Этот перпендикуляр остается разделить в отношении CD : AB.

5.6. Пусть MN — отрезок длины l, E — его середина, а длина отрезка ОО1 равна а (рис. II.5.6). Если спроецировать точку E на плоскость нижнего основания, то легко вычислить длину отрезка GO, равного отрезку EF. (!!)

Поскольку длина отрезка GO, равного отрезку EF, не зависит от расположения отрезка MN, то точка E лежит на окружности радиуса EF с центром в точке F. Остается установить обратное предположение и вспомнить о том, что отрезок не должен находиться вне куба.

K главе 6

6.1. Воспользоваться тем, что p– 1, p, p + 1 — три последовательных числа, причем p — простое, большее трех.

6.3. Если n = 2k + 1, то аn + bn = (а + b)(аn– 1– ... + bn– 1).

6.4. Среди этих же чисел будет 125/2 = 62 [16] , делящихся на 8 = 2^3 и т. д.

6.5. Так как сумма цифр числа делится на 81, то естественно предположить, что оно делится на 81. Однако такой признак делимости не был доказан в курсе арифметики, и поэтому придется дважды воспользоваться признаком делимости на 9. Для этого удобно разбить цифры числа на 9 групп, каждая из которых делится на 9.

6.6. Если многочлен n4 + 4 разложен на множители второй степени, то он может быть простым числом только в том случае, если один из множителей равен единице.

16

[x] — целая часть числа x.

  • Читать дальше
  • 1
  • ...
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: