Вход/Регистрация
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
вернуться

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

А= 1,044176755

В= 1,0857629

Как видите, система В, несмотря на то что ее математическое ожидание пример­но в четыре раза меньше, чем системы А, приносит почти в два раза больше за ставку (доходность 8,57629% за ставку, когда вы реинвестируете с оптимальным f), чем система А (которая приносит 4,4176755% за ставку, когда вы реинвести­руете с оптимальным f).

Система % Выигрышей Выигрыш: Проигрыш МО f Среднее геометрическое
А 10 28: 1 1,9 0,0678 1,0441768
В 70 1,9:1 0,4 0,4 1,0857629

Проигрыш 50% по балансу потребует 100% прибыли для возмещения; 1,044177 в степени Х будет равно 2,0, когда Х приблизительно равно 16,5, то есть для возме­щения 50% проигрыша для системы А потребуется более 16 сделок. Сравним с сис­темой В, где 1,0857629 в степени Х будет равно 2,0, когда Х приблизительно равно 9, то есть для системы В потребуется 9 сделок для возмещения 50% проигрыша.

В чем здесь дело? Не потому ли все это происходит, что система В имеет про­цент выигрышных сделок выше? Истинная причина, по которой В функциони­рует лучше А, кроется в разбросе результатов и его влиянии на функцию роста. Большинство трейдеров ошибочно считают, что функция роста TWR задается следующим образом:

где R = процентная ставка за период (например, 7% = 0,07);

N = количество периодов.

Так как 1 + R то же, что и HPR, большинство ошибочно полагает, что функция роста [3] TWR равна:

(1.18) TWR = HPR ^N

Эта функция верна только тогда, когда прибыль (то есть HPR) постоянна, чего в торговле не бывает. Реальная функция роста в торговле (или любой другой среде, где HPR не явля­ется постоянной) — это произведение всех HPR. Допустим, мы торгуем кофе, наше оптимальное f составляет 1 контракт на каждую 21 000 долларов на балансе счета и прошло 2 сделки, одна из которых принесла убыток 210 долларов, а другая выигрыш 210 долларов. В этом примере HPR равны 0,99 и 1,01 соответственно. Таким образом, TWR равно:

3

Многие ошибочно используют среднее арифметическое HPR в уравнении HPR ^ N. Как здесь показано, это не даст истинное TWR после N игр. Вы должны использовать геометрическое, а не арифметическое среднее HPR ^ N. Это даст истинное TWR. Если стандартное отклонение HPR равно 0, тогда арифметическое среднее HPR и геометрическое среднее HPR эквивалентны, и не имеет значения, какое из них вы используете.

TWR = 1,01 * 0,99 = 0,9999

Дополнительную информацию можно получить, используя оценочное среднее геометрическое (EGM):

или

Теперь возведем уравнение (1.16а) или (1.166) в степень N, чтобы рассчитать TWR Оно будет близко к «мультипликативной» функции роста, действительному TWR

или

где N = количество периодов;

АНPR = среднее арифметическое HPR;

SD = стандартное отклонение значений HPR;

V = дисперсия значений HPR.

Оба уравнения (1.19) эквивалентны.

Полученная информация говорит, что найден компромисс между увели­чением средней арифметической торговли (HPR) и дисперсией HPR, и ста­новится ясна причина, по которой система (1,9:1 ; 70%) работает лучше, чем система (28:1; 10%)!

Нашей целью является максимизация коэффициента этой функции, т.е. мак­симизация следующей величины:

Показатель оценочного TWR, т.е. N, сам о себе позаботится. Увеличение N не яв­ляется проблемой, так как мы можем расширить количество рынков или торго­вать в более краткосрочных типах систем.

Расчет дисперсии и стандартного отклонения (V и SD соответственно) может оказаться трудным для большинства людей, не знакомых со статистикой. Вместо этих величин многие используют среднее абсолютное отклонение, которое мы на­зовем М. Чтобы найти М, надо просто взять среднее абсолютное значение разно­сти самой величины и ее среднего значения.

При колоколообразном распределении (как почти всегда бывает с распределени­ем прибылей и убытков торговой системы) среднее абсолютное отклонение при­мерно равно 0,8 стандартного отклонения (в нормальном распределении оно со­ставляет 0,7979). Поэтому мы можем сказать:

и

Обозначим среднее арифметическое HPR переменной А, а среднее геометричес­кое HPR переменной G. Используя уравнение (1.166), мы можем выразить оце­ночное среднее геометрическое следующим образом:

Из этого уравнения получим:

Теперь вместо дисперсии подставим стандартное отклонение [как в (1.16а)]:

Из этого уравнения мы можем выделить каждую переменную, а также выде­лить ноль, чтобы получить фундаментальные соотношения между средним арифметическим, средним геометрическим и разбросом, выраженным здесь как SD ^ 2:

  • Читать дальше
  • 1
  • ...
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: