Шрифт:
Теперь заметьте, что правая часть (3.32) на самом деле «проще» левой части. Прибор А полностью описан девятью числами <j|А|i>, сообщающими, каков отклик А на три базисных состояния прибора Т. Как только мы узнаем эту девятку чисел, мы сможем управиться с любой парой входных и выходных состояний j и c, если только определим каждое из них через три амплитуды перехода в каждое из трех базисных состояний (или выхода из них). Результат опыта предсказывается с помощью уравнения (3.32).
В этом и состоит основной вывод квантовой механики частицы со спином 1. Каждое состояние описывается тройкой чисел — амплитудами пребывания в каждом из базисных состояний (из избранной их совокупности). Всякий прибор описывается девяткой чисел — амплитудами перехода в приборе из одного базисного состояния в другое. Зная эти числа, можно подсчитать что угодно.
Девятка амплитуд, описывающая прибор, часто изображается в виде квадратной матрицы, именуемой матрицей
<j|A|i>:
Вся математика квантовой механики является простым расширением этой идеи. Приведем несложный пример. Пусть имеется прибор С, который мы хотим проанализировать, т. е. рассчитать различные <j|С|i>. Скажем, мы хотим знать, что случится в эксперименте типа
Но затем мы замечаем, что С просто состоит из двух частей: стоящих друг за другом приборов А и В. Сперва частицы проходят через А, а потом — через B, т. е. можно символически записать
Мы можем прибор С назвать «произведением» А и В. Допустим также, что мы уже знаем, как эти две части анализировать; таким образом, мы можем узнать матрицы А и В (по отношению к Т). Тогда наша задача решена. Мы легко найдем <c|С|j> для любых входных и выходных состояний. Сперва мы напишем
Понимаете, почему? (Подсказка: представьте, что между А к В поставлен прибор Т.) Если мы затем рассмотрим особый случай, когда j и cтакже базисные состояния (прибора Т), скажем i и j, то получим
Это уравнение дает нам матрицу прибора «произведения» С через матрицы приборов А и В. Математики именуют новую матрицу <j|С|i>, образованную из двух матриц <j|В|i> и <j|А|i> в соответствии с правилом, указанным в (3.36), матричным «произведением» ВА двух матриц В и А. (Заметьте, что порядок существен, АВ№ВА.) Итак, можно сказать, что матрица для стоящих друг за другом двух частей прибора — это матричное произведение матриц для этих двух приборов порознь (причем первый прибор стоит в произведении справа). И каждый, кто знает матричную алгебру, поймет, что речь идет просто об уравнении (3.36).
§ 7. Преобразование к другому базису
Мы хотим сделать одно заключительное замечание относительно базисных состояний, используемых в расчетах. Предположим, мы захотели работать с каким-то определенным базисом, скажем с базисом S, а кто-то другой решает провести те же расчеты с другим базисом, скажем с базисом Т.
Для конкретности назовем наши базисные состояния состояниями (iS), где i= +, 0, -, а его базисные состояния назовем (jT). Как сравнить его работу с нашей? Окончательные ответы для результатов любых измерений обязаны оказаться одинаковыми, но употребляемые в самих расчетах всевозможные матрицы и амплитуды будут другими.
Как же они соотносятся? К примеру, если оба мы начинаем с одного и того же j, то мы опишем это j на языке трех амплитуд <iS|j> — амплитуд того, что j переходит в наши базисные состояния в представлении S, а он опишет это j амплитудами <jТ|j> — амплитудами того, что состояние j переходит в базисные состояния в его, Т, представлении. Как проверить, что мы оба на самом деле говорим об одном и том же состоянии j? Это можно сделать с помощью нашего общего правила II [см. (3.27)]. Заменяя cлюбым из его состояний jT, напишем
Чтобы связать оба. представления, нужно задать только девять комплексных чисел — матрицу <jT|iS>, Эту матрицу затем можно использовать для того, чтобы перевести все его уравнения в нашу форму. Она сообщает нам, как преобразовать одну совокупность базисных состояний в другую. (По этой причине <jT|iS>иногда именуют «матрицей преобразования от представления S к представлению T». Слова ученые!)