Вход/Регистрация
Фейнмановские лекции по физике. 8. Квантовая механика I
вернуться

Фейнман Ричард Филлипс

Шрифт:

где RUSki — коэффициенты, принадлежащие этому преобразо­ванию. Но ясно, что (4.9) и (4.10) должны приводить к одинако­вым амплитудам С"k, причем независимо от того, каково было то начальное состояние j, которое снабдило нас амплитудами Сi. Значит, должно быть

Иными словами, для любого поворота S®U базиса, если рас­сматривать его как два последовательных поворота S®Т и Т®U, можно получить матрицу поворота ruskiиз матриц двух частных поворотов при помощи формулы (4.11). Если угод­но, (4.11) следует прямо из (4.1) и представляет собой лишь другую запись формулы:

Для полноты добавим еще следующее. Но не думайте, что это будет что-то страшно важное; если хотите, переходите, не читая, прямо к следующему параграфу. Надо сознаться, что то, что мы сказали, не совсем верно. Мы не можем на самом деле утверждать, что (4.9) и (4.10) обязаны привести к абсолют­но одинаковым амплитудам. Одинаковыми должны оказаться только физические результаты; сами же амплитуды, могут отличаться на общий фазовый множитель типа eid, не меняя результатов никаких расчетов, касающихся реального мира. Иначе говоря, вместо (4.11) единственное, что можно утвер­ждать,— это

где d — какая-то вещественная постоянная величина. Смысл этого добавочного множителя еid, конечно, в том, что амплиту­ды, которые мы получим, пользуясь матрицей RUS, могут все отличаться на одну и ту же фазу (е– id) от амплитуд, которые получились бы из двух поворотов RUTи RTS. Но мы знаем, что если все амплитуды изменить на одинаковую фазу, то это ни на чем не скажется. Так что при желании можно этот фазовый множитель просто игнорировать. Оказывается, однако, что если определить нашу матрицу поворота особым образом, то этот фазовый множитель вообще не появится: б в (4.12) всегда будет нулем. Хотя это и не отражается на наших дальнейших рассуждениях, мы беремся это быстро доказать, пользуясь ма­тематической теоремой о детерминантах. [А если вы до сих пор мало знакомы с детерминантами, то не следите за доказатель­ством и прямо переходите к определению (4.15).)

Во-первых, следует напомнить, что (4.11) — это математи­ческое определение «произведения» двух матриц. (Просто очень удобно говорить «RUSесть произведение RUTи RTS».) Во-вторых, существует математическая теорема (которую для используемых здесь матриц 2X2 вы легко докажете), утверждающая, что детерминант «произведения» двух матриц есть произведение их детерминантов. Применив эту теорему к (4.12), получим

(Мы отбрасываем нижние индексы, они здесь ничего полезного нам не сообщают.) Да, слева стоит 2S! Вспомните, что мы имеем дело с матрицами 2x2; каждый член в матрице RUSkiумножен на еid, а каждый член в детерминанте (состоящий из двух мно­жителей) получается умножением на еi2d. Извлечем из (4.13) корень и разделим на него (4.12):

Добавочный фазовый множитель исчез.

Дальше оказывается, что если мы хотим, чтобы все наши амплитуды в любом заданном представлении были нормированы (а это, как вы помните, означает, что

то у всех матриц поворота детерминанты окажутся чисто мни­мыми экспонентами, наподобие еia. (Мы не будем этого дока­зывать; вы сами потом увидите, что это всегда так.) Значит, мы сможем, если захотим, выбрать все наши матрицы поворота R так, чтобы фаза их получалась однозначно, взяв DetR=1. Это будет делаться так. Пусть мы каким-то произвольным об­разом определили матрицу поворота R. Возьмем за правило «приводить» ее к «стандартной форме», определяя

Для получения однозначных фаз мы просто умножаем каждый член в R на один и тот же фазовый множитель. В дальнейшем мы будем всегда предполагать, что наши матрицы были приве­дены к «стандартной форме»; тогда мы сможем пользоваться прямо формулой (4.11) без каких-либо добавочных фазовых множителей.

§ 3. Повороты вокруг оси z

Теперь мы уже подготовлены к тому, чтобы отыскать матри­цу преобразования Rji, связывающую два разных представления, Владея нашим правилом объединения поворотов и нашим предположением, что в пространстве нет предпочтительного направ­ления, мы владеем ключом для отыскания матрицы любого произвольного поворота. Решение здесь только одно. Начнем с преобразования, которое отвечает повороту вокруг оси z. Пусть имеются два прибора S и Т, поставленных друг за дру­гом вдоль одной прямой; оси их параллельны и смотрят из страницы на вас (фиг. 4.4, а).

  • Читать дальше
  • 1
  • ...
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: