Вход/Регистрация
Выход из кризиса. Новая парадигма управления людьми, системами и процессами
вернуться

Деминг Эдвардс

Шрифт:

Грузо– и пассажироперевозчики в США (2 млн) в большинстве своем аккуратно ведут учет пройденных миль и закупленного числа галлонов топлива. Они могли бы использовать эти данные более успешно. Для обнаружения проблем водитель мог бы ежедневно вести для каждой машины простую карту хода процесса. Возможно, это занятие понравится водителю и откроет массу возможностей для него и владельца.

Контрольная карта указывает на существование причин вариаций, которые лежат вне системы. Саму причину она не раскрывает.

Карта хода процесса – это не мгновенный индикатор. Тренд из шести последовательных точек или серия из семи или восьми точек ниже или выше среднего значения обычно указывают на присутствие особой причины (см. ссылку далее ).

Рис. 31. Фрагмент карты хода процесса для числа миль на галлон между заправками топливного бака. Серия из девяти точек ниже среднего говорит об изменении процесса. Причина в плохих свечах зажигания. (Этот пример предоставлен г-ми Франком Белчамбером и Робертом Джеймсоном из Nashua Corporation.)

Первый урок применения статистической теории. Курсы по статистике часто начинаются с изучения распределений и их сравнения. Студентов ни на занятиях, ни в книгах не предупреждают о том, что для аналитических целей (таких как улучшение процесса) распределения и вычисление среднего, определение метода, стандартного отклонения, значений хи– квадрат, t– статистики и т. д. бесполезны, если только данные не были получены для процесса в состоянии статистической управляемости. Соответственно, первый шаг при исследовании данных – понять, получены ли они в состоянии статистической управляемости. Самый легкий путь при анализе данных – это расположить точки в порядке их появления, чтобы понять, можно ли извлечь какую-либо пользу из распределения, образованного данными [76] .

76

См. John Tukey, Exploratory Data Analysis (Addison – Wesley, 1977); Frederick Mosteller, John Tukey, Data Analysis and Regression (Addison – Wesley, 1977); Paul Velleman and David Hoaglin, Applications, Basics, and Computing of Exploratory Data Analysis (Duxbury Press, 1981); David Hoaglin, Frederick Mosteller, John Tukey, Understanding Robust and Exploratory Data Analysis (Wiley, 1983); те же авторы, Exploring Tables, Trends, and Shapes (Wiley, 1984). – Прим. авт.

Рис. 32. Карта хода процесса для 50 пружинок, испытанных в порядке их изготовления. Если не учитывать время изготовления, данные образуют симметричное распределение, но если расположиmь их в порядке изготовления пружин, окажется, что распределение бесполезно. Например, распределение не сказало бы нам, в какой допуск могут попасть готовые пружинки. Причина в том, что здесь не существует идентифицируемого процесса

В качестве примера обратимся к распределению, которое, по-видимому, имеет наилучшие характеристики, но при этом не просто бесполезно, а вводит в заблуждение. На рис. 32 показано распределение результатов замеров 50 пружинок одного вида, используемых в фотоаппарате определенного типа. Пружинки измерялись растяжением под действием силы 20g. Распределение выглядит довольно симметричным и не выходит за пределы допуска. Возникает искушение сделать вывод, что процесс находится в удовлетворительном состоянии.

Однако значения растяжений, расположенные в порядке времени их изготовления, демонстрируют тренд в сторону уменьшения. Что-то не так с процессом изготовления или с измерительным прибором.

Любая попытка использовать распределение, показанное на рис. 32, бесполезна. Например, расчет стандартного отклонения для данного распределения не даст значения, которое можно использовать для предсказания. Оно ничего не говорит о процессе, поскольку он нестабилен [77] .

77

Shewhart W. Statistical Method from the Viewpoint of Quality Control, pp. 86–92. – Прим. авт.

Таким образом, мы получили очень важный урок – для анализа данных нужно посмотреть на них. Откладывайте точки в порядке производства изделий или в каком-то ином разумном порядке. Для некоторых проблем полезна простая диаграмма рассеяния.

Что, если кто-либо попытается использовать это распределение для расчета показателей воспроизводимости процесса? Он попадет в ловушку, из которой сложно выбраться. Процесс нестабилен. Ему вообще нельзя приписать никакой воспроизводимости. То же самое мы наблюдали при анализе рис. 2.

Распределение (гистограмма) всего лишь демонстрирует накопленные данные работы процесса, ничего не говоря о его воспроизводимости. Как мы увидим, процесс обладает воспроизводимостью, только если он стабилен. Воспроизводимость процесса достигается и подтверждается путем использования контрольной карты, но не самим распределением. Как мы уже видели, и простая карта хода процесса дает представление о воспроизводимости процесса.

Какая характеристика или характеристики важны? Какие значения важны? Какие надо изучать с помощью контрольной карты, а какие – любым другим методом? Ответ зависит от предметной области (проектирование, химия, психология, знание процесса, знание материалов и т. д.). В любом случае следует использовать статистическую теорию.

  • Читать дальше
  • 1
  • ...
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: