Вход/Регистрация
Квантовая хромодинамика: Введение в теорию кварков и глюонов
вернуться

Индурайн Франсиско Хосе

Шрифт:

1,

:

q

(x)q(y):,

:

q

(x)

D

q(y):,…,

:(

q

(x)q(y))

2

:,…,

:G(x)G(y):,…

(18.2)

т.е. бесконечную последовательность операторов. Но в пределе x->y требуются только некоторые из них (иногда для выяснения лидирующего поведения достаточно одного). Это можно показать следующим образом. Пусть размерность оператора N равна pN; тогда среди операторов (18.2) низшей размерностью обладают операторы

1(p

1

=0),

:

q

q:(p

qq

=3),

:

q

D

q:(p

q

D
q

=4),

и

:G

2

:(p

G2

=4).

Если предположить, что размерность каждого из операторов A и B равна 3, то простой подсчет размерностей позволяет заключить, что размерность вильсоновского коэффициента C1 равна 6, коэффициент Cqq имеет размерность 3, а размерность коэффициентов CqDq и CG2 равна 2. Следовательно, явно выделяя массу из коэффициента Cqq , получаем

C

1

(x-y)(x-y)

– 6

,

C

qq

(x-y)m(x-y)

– 2

,

C

qDq

(x-y)(x-y)

– 2

,

C

G2

(x-y)(x-y)

– 2

,

(18.3)

где х6 означает (х·х)3, х– 2 означает 1/х2 и т.д. Очевидно, что эти соотношения точно выполняются лишь в случае свободных полей. Асимптотическая свобода КХД гарантирует, что поправки к соотношениям (18.3) могут быть только логарифмическими. Эти поправки не вносят существенных изменений во все проводимые рассуждения.

Коэффициенты при других операторах в пределе x->0 оказываются конечными. Если теперь взять какой-нибудь матричный элемент от разложения (18.1):

|TA(x)B(0)|

 

=

x->0

C

1

(x)|+

C

qq

(x)

|:

q

(0)q(0):|

+

C

qDq

(x)

|:

q

(0)

D

q(0):|

+

C

G2

(x)

|:G

2

(0):|+…

(18.4)

то из регулярности операторов Nt следует, что в пределе x->0 поведение левой части (18.4) определяется вильсоновскими коэффициентами, умноженными на конечные константы |Nt|. Таким образом, в пределе x->0 лидирующее поведение хронологического произведения операторов TA(x)B(0) определяется коэффициентом C1(x), а старшие поправки контролируются коэффициентами Cqq, Cq

D
q и CG2 .

Вернемся к разложению (18.1). Так как операторы Nt(x,y) регулярны, их можно разложить по степеням разности x-y. При у = 0 получаем

N

t

(x,0)=

 

n

 

x

1

…x

n

N

(n)1…n

t

(0,0) .

Например, для полей q(x) и q(x) имеем

:

q

(0)q(-x):=

 

n

 

x

1

…x

n

(-1)n

n!

:

q

(0)

1

…

n

q(0):.

(18.5)

В случае калибровочной теории, такой как КХД, обычные производные, фигурирующие в (18.5), следует заменить ковариантными производными29а). Тогда получаем

29а) Интуитивно это ясно. Формальное доказательство можно получить, заметив, что оператор q(0)q(-1) не является калибровочно-инвариантным. Калибровочная инвариантность восстанавливается при введении экспоненциального множителя P exp0– 1dytaBa . См. , например, работу [269] и приложение И.

TA(x)B(0)

x->0

C

1

(x)1+C

  • Читать дальше
  • 1
  • ...
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: