Шрифт:
91 - 100
Задача 91. В футбольном турнире участвуют 5 команд из Москвы, Санкт-Петербурга, Великого Новгорода, Нижнего Новгорода и Екатеринбурга. Турнир проводится в один круг: каждая пара встречается один раз. Сколько всего матчей в этом турнире?
Матчей будет вдвое меньше, чем в двухкруговом турнире, то есть не 20, а 10. Заметим, что если бы команд было 10, то матчей было бы (10 · 9) : 2 = 45, а общая формула числа матчей при n участниках выглядит так:
Ответ: 10.
Задача 92. Как с помощью сосудов вместимостью 4 и 7 л налить из водопроводного крана в чайник ровно 2 л воды?
Эту задачу можно решать двумя способами: 1 способ состоит из таких операций: наливаем воду из крана в меньший сосуд, переливаем ее из меньшего сосуда в больший, выливаем воду в чайник из меньшего сосуда; 2 способ состоит из таких операций: наливаем воду из крана в больший сосуд, переливаем ее из большего сосуда в меньший, выливаем воду в чайник из большего сосуда.
Надо попробовать оба способа и выбрать наиболее короткий.
После этого операции повторяются. Итого первым способом можно выполнить требуемое за 10 переливаний.
1 способ
2 способ
Как видно, второй способ короче на одно переливание.
Заметим, что задачу можно существенно упростить, потребовав вылить в чайник 3 литра.
Задача 93. Старинная китайская задача. Имеются вещи. Если считать их тройками, то останется 2; если считать пятерками, то останется 3; если считать семерками, то останется 2. Сколько вещей?
Задача решается либо составлением системы, либо подбором. В 4 классе возможен только второй путь решения.
Из первого условия ясно, что число вещей может быть таким:
5, 8, 11….
Из второго условия ясно, что число вещей может быть таким:
13, 18….
Из третьего условия ясно, что число вещей может быть таким:
16, 23….
Напишем эти последовательности до получения совпадающих членов во всех трех:
5, 8, 11, 14, 17, 20, 23…
13, 18, 23….
16, 23…
Ответ: 23.
Задача 94. Сделай рисунок симметричным:
Задача 95. Разгадай ребус:
Нужно заметить, что при умножении первого множителя на 8 получается трехзначное число, а при умножении на первую и на третью цифры получаются четырехзначные числа. Значит, второй множитель — это 989. Остается выяснить, какое число при умножении на 8 дает трехзначное произведение, а при умножении на 9 — четырехзначное. Это число, большее, чем 111, и меньшее, чем 125. В то же время известно, что при умножении на 9 оно дает число, оканчивающееся на 9. Значит, оно оканчивается на 1. Итак, это 121.
Ответ: 121 · 989 = 119669.
Задача 96.Известно, что а : b = 28. Чему равно а : (b · 2)?
Надо попросить детей придумать текст задачи на эту тему.
Ответ: 14.
Задача 97.Задача из «Арифметики» Л. Магницкого. Найти число, которое при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3, при делении на 5 дает в остатке 4.
Прибавим к искомому числу единицу. Тогда полученная сумма будет делиться без остатка и на 2, и на 3, и на 4, и на 5. Таким свойством обладает число, делящееся на 60. Поэтому полученная нами сумма равна 60, либо 120, либо 180, и т. д.
Ответ: Число, на единицу меньшее любого числа, делящегося на 60.
Задача 98. Найди сумму первых ста нечетных чисел. Великий русский математик Андрей Николаевич Колмогоров решил эту задачу за одну минуту в шестилетнем возрасте.