Шрифт:
Для обоих путников одинаково пройденное расстояние. Первый половину времени шел со скоростью 5 км/ч, а значит, он с большей скоростью прошел больше половины пути. Второй же ровно половину пути прошел с большей скоростью, значит, первый потратил времени меньше.
Ответ: Первый.
Задача 118. 1 кг грибов имеют влажность 99%. Их подсушили до 98 % влажности. Сколько теперь весят эти грибы?
Очень трудно предугадать ответ этой задачи. Советую попробовать сделать это в классе. Дети будут называть числа, близкие к 1 кг. А между тем, во время подсушивания испарялась вода, а сухое вещество, которого было и осталось 10 г, из 1 % превратилось в 2 %. Так что масса грибов уменьшилась вдвое.
Ответ: 500 г.
Задача 119. В шахматы играют 20 человек, без ничьих, на выбывание. Сколько будет сыграно партий?
Это еще одна форма соревнований: проигравший одну партию сразу выбывает. Должно выбыть 19 человек, значит, партий должно быть столько, сколько человек должно выбыть.
Ответ: 19.
Задача 120. У меня остановились стенные часы, а никаких других часов у меня нет. Я пошел к другу, часы которого ходят верно, поиграл с ним в шахматы и, придя домой, смог верно поставить свои часы. Как мне удалось это сделать?
Я завел свои часы и запомнил, сколько времени они показывают. Придя к другу и уходя от него, я оба раза посмотрел на его часы, а поэтому я знал, сколько времени я пробыл у него и во сколько от него ушел. Придя домой, я определил по своим часам, сколько времени я отсутствовал, а вычтя из этого времени то время, которое пробыл у друга, определил, сколько времени я потратил на путь к нему и от него. Разделив это время пополам и прибавив его к последнему показанию часов друга, я определил время прибытия к себе домой. (Например, пусть я поставил свои часы на 12.00, придя к другу, увидел, что на его часах 16.00, уходя от него увидел на его часах 17.00, а придя домой, увидел, что мои часы показывают 13.30. Тогда я определяю, что отсутствовал 1,5 часа, из них ровно час был у друга, значит, на дорогу в оба конца потратил полчаса, а на путь от друга домой — 15 минут. Я ставлю свои часы на 17.15.)
121 - 130
Задача 121. Как с помощью сосудов вместимостью 3 и 7 л налить из водопроводного крана в чайник ровно 2 л воды?
Задача 122. В 1 кг сплава олова и никеля содержится 50 % олова. Сколько никеля надо добавить в этот сплав, чтобы он составил 60 % сплава?
Сначала нужно определить, сколько сейчас в сплаве никеля и сколько олова. Так как 100 % — это 1 кг, то олова в сплаве 500 г и никеля — 500 г. Чтобы никель составил 60 % сплава, нужно сделать так, чтобы 500 г олова составляли 40 % сплава, то есть чтобы в сплаве было 1250 г.
Ответ: 250 г.
Задача 123. Сорок учеников выстроены в прямоугольник по 10 человек в каждой шеренге и по 4 в каждой колонне. В каждой шеренге выбран самый низенький ученик, а затем из 4 отобранных выбран самый высокий. Им оказался ученик Андреев. Затем в каждой колонне был выбран самый высокий ученик и среди 10 отобранных выбран самый низенький. Им оказался ученик Петров. Кто выше, Андреев или Петров?
Пусть в той же колонне, что Андреев и в той же шеренге, что Петров, стоит Сергеев. Тогда он выше Андреева и ниже Петрова, то есть Петров выше Андреева:
Ответ: Петров.
Задача 124. В 1 стакане 20 % молока, а остальное — вода, в другом таком же стакане 80 % молока, а остальное — вода. Сколько процентов молока будет в кастрюле, если в нее выльют оба эти стакана?
Можно считать стакан равным, например, 0,2 л или совсем не оперировать определенным объемом (в зависимости от силы учащихся). Существенно здесь лишь то, что молоко из первого стакана будет составлять не 20 %, а 10 % всего объема, а молоко из второго стакана будет составлять не 80 %, а 40 % всего объема. Значит, всего молока в кастрюле окажется 10 % + 40 %.
Ответ: 50 %.
Задача 125. В клетках квадрата 3x3 были записаны натуральные числа так, что суммы чисел в каждой строке, в каждом столбце и в каждой диагонали были одинаковыми. Некоторые числа стерли. Осталось число 24 в нижнем правом углу, 15 в центре и 9 правее 15. Восстановите стертые числа.
Обозначим через а число в правом верхнем углу:
Так как суммы цифр во всех столбцах, строках и диагоналях одинаковы, то каждая из них равна а + 33. Значит, в левом нижнем углу стоит число 18:
Поставим число б левее числа 15:
Так как сумма в левом столбце равна сумме во второй строке, то есть равна 24 + б, то в верхнем левом углу стоит число 6:
У нас заполнилась диагональ, по которой можно найти сумму чисел в каждой строке, в каждом столбце и каждой диагонали. Эта сумма равна 6 + 15 + 24 = 45. Теперь можно заполнить и все остальные клетки:
Ответ: