Вход/Регистрация
Программирование. Принципы и практика использования C++ Исправленное издание
вернуться

Страуструп Бьерн

Шрифт:

void* pv2 = my_free_store.get(sizeof(Connection));

Connection* pconn = new(pv2) Connection(incoming,outgoing,buffer);

Использование оператора

static_cast
описано в разделе 17.8. Конструкция
new(pv2)
называется синтаксисом размещения. Она означает следующее: “Создать объект в ячейке памяти, на которую ссылается указатель
pv2
”. Сама по себе эта конструкция не размещает в памяти ничего. Предполагается, что в классе Connection есть конструктор со списком аргументов (
incoming,outgoing,buffer
). Если это условие не выполняется, то программа не скомпилируется.

Естественно, наш шаблонный класс

Stack
представляет собой всего лишь один из вариантов общей идеи о стеке. Например, если ограничения на использование памяти не такие строгие, то мы можем определить стек, в котором количество доступных байтов задается конструктором.

25.4. Адреса, указатели и массивы

Предсказуемость требуется в некоторых встроенных системах, а надежность — во всех. Это заставляет нас избегать некоторых языковых конструкций и методов программирования, уязвимых для ошибок (в контексте программирования встроенных систем). В языке С++ основным источником проблем является неосторожное использование указателей.

Выделим две проблемы.

• Явные (непроверяемые и опасные) преобразования.

• Передача указателей на элементы массива.

Первую проблему можно решить, строго ограничив использование явных преобразований типов (приведения). Проблемы, связанные с указателями и массивами, имеют более тонкие причины, требуют понимания и лучше всего решаются с помощью (простых) классов или библиотечных средств (например, класса array; см. раздел 20.9). По этой причине в данном разделе мы сосредоточимся на решении второй задачи.

25.4.1. Непроверяемые преобразования

Физические ресурсы (например, регистры контроллеров во внешних устройствах) и их основные средства управления в низкоуровневой системе имеют конкретные адреса. Мы должны указать эти адреса в наших программах и присвоить этим данных некий тип. Рассмотрим пример.

Device_driver* p = reinterpret_cast<Device_driver*>(0xffb8);

Эти преобразования описаны также в разделе 17.8. Именно этот вид программирования требует постоянного использования справочников. Между ресурсом аппаратного обеспечения — адресом регистра (выраженного в виде целого числа, часто шестнадцатеричного) — и указателями в программном обеспечении, управляющим аппаратным обеспечением, существует хрупкое соответствие. Вы должны обеспечить его корректность без помощи компилятора (поскольку эта проблема не относится к языку программирования). Обычно простой (ужасный, полностью непроверяемый) оператор

reinterpret_cast
, переводящий тип
int
в указатель, является основным звеном в цепочке связей между приложением и нетривиальными аппаратными ресурсами.

Если явные преобразования (

reinterpret_cast
,
static_cast
и т.д.; см. раздел A.5.7) не являются обязательными, избегайте их. Такие преобразования (приведения) бывают необходимыми намного реже, чем думают программисты, работающие в основном на языках C и C++ (в стиле языка С).

25.4.2. Проблема: дисфункциональный интерфейс

Как указывалось в разделе 18.5.1, массив часто передается функции как указатель на элемент (часто как указатель на первый элемент). В результате он “теряет” размер, поэтому получающая его функция не может непосредственно определить количество элементов, на которые ссылается указатель. Это может вызвать много трудноуловимых и сложно исправимых ошибок. Здесь мы рассмотрим проблемы, связанные с массивами и указателями, и покажем альтернативу. Начнем с примера очень плохого интерфейса (к сожалению, встречающегося довольно часто) и попытаемся его улучшить.

void poor(Shape* p, int sz) // плохой проект интерфейса

{

for (int i = 0; i<sz; ++i) p[i].draw;

}

void f(Shape* q, vector<Circle>& s0) // очень плохой код

{

Polygon s1[10];

Shape s2[10];

// инициализация

Shape* p1 = new Rectangle(Point(0,0),Point(10,20));

poor(&s0[0],s0.size); // #1 (передача массива из вектора)

poor(s1,10); // #2

poor(s2,20); // #3

poor(p1,1); // #4

delete p1;

p1 = 0;

poor(p1,1); // #5

poor(q,max); // #6

}

Функция
poor
представляет собой пример неудачной разработки интерфейса: она дает вызывающему модулю массу возможностей для ошибок и не оставляет никаких надежд защититься от них на этапе реализации.

ПОПРОБУЙТЕ

Прежде чем читать дальше, попробуйте выяснить, сколько ошибок вы можете найти в функции

f
? В частности, какой из вызовов функции
poor
может привести к краху программы?

На первый взгляд данный вызов выглядит отлично, но это именно тот вид кода, который приносит программистам бессонные ночи отладки и вызывает кошмары у инженеров по качеству.

1. Передается элемент неправильного типа (например,

poor(&s0[0],s0.size
). Кроме того, вектор
s0
может быть пустым, а в этом случае выражение
&s0[0]
является неверным.

  • Читать дальше
  • 1
  • ...
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: