Вход/Регистрация
Пространство, время и движение. Величайшие идеи Вселенной
вернуться

Кэрролл Шон

Шрифт:

Теперь попробуйте действовать по-другому. Возьмите веревку и привяжите один конец к первому дереву, а другой — ко второму. Натяните веревку и посмотрите на результат: получится прямая, проходящая ровно над следами из прошлого опыта.

Это и очевидно, и примечательно. Мы хорошо понимаем, что означает «прямая», но можем построить ее разными способами. Один из них — двигаться, не меняя направления, другой — найти кратчайший путь между начальной и конечной точками. Первый способ соответствует локальной философии в духе парадигмы Лапласа, о которой мы говорили в прошлой главе. Действительно, в каждый момент времени мы делаем что-то, что в конце концов приводит нас к определенному результату. Второй способ глобален, как законы Кеплера: из многих способов расположить веревку между деревьями выбран самый короткий. Оба способа, хоть и разные, дают в итоге одинаковый результат.

Физика работает точно так же. Мы уже говорили про идею Лапласа: данные о состоянии системы на какой-то момент времени позволяют нам шаг за шагом проследить за ее развитием в будущем. Но тот же результат можно получить совсем по-другому, исходя из совсем иного набора фундаментальных понятий. Поэтому возникает вопрос: какой из способов лучше, более эффективен? Если результат все равно один, возможно, нет разницы, как его получить. Мы не знаем окончательных формулировок законов физики, а потому одна из дорог может оказаться менее петляющей. Как однажды сказал Ричард Фейнман, одну и ту же мысль можно выразить по-разному, но «на пути в неизвестность все способы будут идентичны с психологической точки зрения».

В прошлой главе мы говорили об «изменении» в целом как исключительно общем понятии. В этой главе мы обсудим динамику, то есть изменения, подчиняющиеся формулам физики. Мы рассмотрим свойства некоторых физических систем и что говорит о них классическая механика. Размышляя о кинетической и потенциальной энергии, мы сделаем интересные выводы о динамике разных объектов. В итоге мы заново сформулируем законы механики, посмотрим на них более глобально, с учетом истории системы в целом, сквозь призму того, что сейчас называется «принципом наименьшего действия».

Важные сведения о движении

Рассмотрим парадигму Лапласа чуть более систематично. Чтобы не усложнять, представим себе частицу, которая движется в трехмерном пространстве. Состояние такой системы определяется положением (вектором

) и скоростью, которая представляет собой производную положения по времени,
. Таким образом, мы получаем шесть чисел: три для положения и три для скорости.

Порядок действий таков. Мы говорим о какой-то конкретной системе, к примеру, о «шаре, катящемся с холма» или «планете, вращающейся вокруг Солнца». У нас есть данные

об этой системе, известные на момент времени t0. Анализируя ситуацию, мы можем определить результирующую силу
, которая действует на объект, например силу тяготения, с которой Солнце притягивает планету. Далее по второму закону Ньютона находим ускорение
и узнаем в результате не только исходные данные
, но и как быстро они изменяются:

Теперь при помощи дифференциального исчисления мы в состоянии построить траекторию движения объекта

.

Это на удивление гибкий алгоритм. Мы много говорим о частицах, но классическая механика — наука значительно более общая. Возьмем некий пространственный объект: твердое, жидкое или газообразное тело, и поглядим на него макроскопически, как на единое целое, а не набор атомов. Мы можем сказать, что любой бесконечно малый кусок, «элемент объема» этого тела dV находится под действием внешних сил: гравитационных, электрических или каких-то иных. Но это не всё. На этот элемент объема будут воздействовать и другие такие же элементы, которые находятся рядом с ним. Если мы знаем положение и скорость рассматриваемого элемента, а также действующие на него силы, законы Ньютона подскажут нам траекторию его движения. Тогда благодаря дифференциальному исчислению мы сможем вывести уравнения для системы в целом, то есть сложить воедино все элементы объема.

Чтобы построить траекторию, нам важно знать входные данные: положение и скорость объекта. Не менее важно, что никакие другие сведения для этого не требуются. Например, ускорение мы получим при помощи закона Ньютона, исходя из строения системы. При этом скорость — производная положения, а ускорение — производная скорости, или, как говорят, вторая производная положения:

(3.1)

Вспомните: говоря об обозначениях, мы отметили, что d — это не переменная, а часть оператора. Запись d/dt означает производную по времени. Чтобы взять вторую производную, то есть производную производной, мы должны использовать оператор d/dt дважды. Поэтому в формулах мы будем писать d2/dt2.

Мы можем взять производные и других, более высоких порядков. У них даже есть свои, несколько экзотические названия:

• Скорость = первая производная положения (по времени).

• Ускорение = производная скорости = вторая производная положения.

• Рывок = производная ускорения = третья производная положения.

• Скачок = производная рывка = четвертая производная положения.

• Прыжок = производная скачка = пятая производная положения.

• Толчок = производная прыжка = шестая производная положения.

  • Читать дальше
  • 1
  • ...
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: