Шрифт:
Большинство физиков сходится во мнении, что в природе нет сингулярностей: ни голых, ни каких-то иных. Мы живем в квантово-механическом мире, а значит, классическая по сути своей теория Эйнштейна перестает работать при некоторых условиях и не может все объяснить. Поэтому не нужно так рьяно цепляться за нее, а двигаться дальше, к новым теориям, которые сгладят сингулярности или, по крайней мере, снимут с повестки дня связанные с ними концептуальные вопросы. Что ж, будем надеяться на квантовую теорию гравитации. На сегодняшний день проблема сингулярностей еще актуальна.
Черные дыры
Радиус Шварцшильда определяет поверхность — так называемый горизонт событий, внутри которого находится особая область пространства-времени: черная дыра. Давайте подумаем о них. Представим себе пространство-время, которое во всех точках описывается метрикой Шварцшильда, а протяженные объекты, вроде звезд и планет, отсутствуют.
Держа в руках метрику, мы можем построить световые конусы. Ведь именно они, а не системы координат или любимое многими разграничение на время и пространство показывают реальную структуру пространства-времени. Посмотрим, как будут выглядеть световые конусы на диаграмме пространства-времени с геометрией Шварцшильда, как бы его глазами.
В такой сферически симметричной геометрии в угловых направлениях ? и ? ничего интересного не происходит. Нам нужно говорить о координатах (t, r), и в них мы имеем нечто, похожее на этот рисунок. Давайте сначала рассмотрим его. Итак, мы нарисовали лучи света, проходящие через несколько точек, а также направленные в будущее световые конусы. Странная картина, скажете вы? Не удивительно: многие очень умные люди, включая Эйнштейна, десятки лет ломали над ней голову. Скоро мы поменяем систему координат, и все немного прояснится.
Да, здесь есть о чем поразмыслить. Справа, при больших значениях r, мы видим привычное нам пространство-время Минковского: нулевые траектории наклонены под углом 45°, а световые конусы направлены вверх. И это имеет физический смысл, поскольку вдали от черной дыры нет заметных гравитационных полей.
По мере приближения к горизонту событий (r = 2GM) световые конусы начинают складываться. Возникает странное впечатление, что мы не можем пересечь радиус Шварцшильда, ведь двигаться можно только в пределах световых конусов. Все дело в системе координат, которая перестает работать на этом участке, и скоро мы убедимся в этом.
За горизонтом событий творится нечто безумное. Сначала световые конусы очень широки, но по мере уменьшения r сужаются. При этом, что поразительно, они направлены влево, а не вверх. И мы по-прежнему обязаны оставаться в их пределах. Следовательно, перемещаясь в сторону уменьшения r за горизонтом событий черной дыры, мы движемся вперед по времени.
Становится ясно, что мы ошибались при размышлениях об r = 0. Интуитивно представляя себе плоское пространство-время, мы принимали эту точку как некое место, начало координат в центре черной дыры. Но это не так. На самом деле r = 0 — не точка в пространстве, а момент во времени. Более того, этот момент неизбежно настанет для всех, кто находится в черной дыре. Как бы мы ни старались, пройти мимо сингулярности не удастся: это не проще, чем обойти стороной завтрашний день.
Вы спросите: как же мы догадались об этом? Но разве мы не хозяева собственных координат, не можем определять их по своему усмотрению? Конечно хозяева. Но здесь мы уже сделали выбор, определили r как радиус сферы, которая окружает источник гравитации. И эта система координат прекрасно работала, давала понятные результаты вне горизонта событий. Но в черной дыре она дает сбой, и мы имеем то, что имеем, а именно превращение r из пространственной координаты во временную.
Попробуем разобраться в причудливых трансформациях r и убедиться в том, что все еще остаемся в реальном мире: поговорим о формулах, определяющих световые конусы.
Что значит «построить световой конус»? Мы выбираем точку и проводим линии, движение по которым не изменяет пространственно-временного положения: ds2 = 0. Вернувшись к линейному элементу (9.6) и вычеркнув из него ? и ? (так как движения в этих направлениях нет), получим:
(9.10)
Поупражняемся в математике. Перенесем второе слагаемое в правую часть, умножим обе части на –1, чтобы убрать неудобные минусы, а затем разделим на (1–2GM/r). Запишем:
(9.11)
Сплошные квадраты. Давайте извлечем из них корень (не забывая добавить знак «±», чтобы учесть, что до возведения в степень числа могли быть и отрицательными), а затем разделим все на dr:
(9.12)