Шолом Анатолий
Шрифт:
• если построить диаграмму по месяцам работы, то можно сделать вывод, что наиболее неблагополучным в аспекте качества является третий месяц. Эта информация подлежит дальнейшему анализу для устранения причин дефектов.
В некоторых случаях целесообразно строить совместно диаграмму Парето и схему «причины – результаты» для выделения «узких» мест системы качества, формирования плана проверок и ранжирования факторов, влияющих на качество.
В заключение этого раздела следует остановиться на идее визуализации (наглядности) анализа качества. Сравнивая табл. 5.3 и рис. 5.3, можно сказать, что каждая из этих форм содержит одну и ту же информацию о качестве. Однако, глядя на табл. 5.3 (которая содержит данные только по семи агрегатам), можно сказать, что «глаза разбегаются» от обилия цифр. В отличие от этого, диаграмма Парето (рис. 5.3) сразу показывает наиболее «дефектонос-ные» агрегаты, что, в свою очередь, дает импульс специалистам для дальнейшего анализа.
5.3.3. Применение простейшего корреляционного анализа для сертификации систем качества
Цель применения простейшего корреляционного анализа – определить и оценить линейную связь между фактором и показателем качества. При этом предполагается, что:
• связь между показателем качества и фактором случайная;
• значения показателя качества и фактора, который, возможно, влияет на него, имеют нормальное распределение вероятностей.
Типичные варианты исследования связи:
• показатель качества ремонта – себестоимость ремонта;
• затраты на ремонт – доремонтный ресурс;
• затраты на ремонт – квалификация рабочих;
• ресурс между ремонтами – год выпуска изделия;
• затраты на диагностическое оборудование – показатель качества ремонта.
Обнаружение связи или доказательство ее отсутствия между фактором X и показателем качества Y дает возможность объективно оценить проверку элементов системы качества. Например, если связь между показателем качества ремонта и квалификацией рабочих не обнаруживается, то это говорит о том, что проверка персонала этого объекта может быть ослаблена.
Для предприятия, внедряющего систему качества, использование методов корреляционного анализа дает возможность осознанно (на основе данных, а не инженерной интуиции) реали-зовывать мероприятия по управлению качеством продукции.
Например, исследование связи между метрологической характеристикой стенда для диагностирования тормозных качеств X и процентом возврата автомобилей после ремонта (по причине низкого качества тормозной системы) Y показало, что нецелесообразно управлять качеством ремонта тормозной системы за счет улучшения характеристик диагностического стенда.
Визуализацию корреляционного анализа осуществляют с использованием диаграмм рассеяния.
Порядок построения диаграммы рассеяния:
1) определяют показатель качества Y, подлежащий анализу, и параметр X, влияющий на этот показатель;
2) уточняют инженерные аспекты этой связи, т. е. физическую возможность зависимости Y (показателя качества) от параметра X;
3) определяют период наблюдений, на котором собирают данные о значениях X и соответствующих значениях Y. Таким образом, формируются два массива данных: Х1, Х2…., Хп; Y1, Y2,…, Yn. Для повышения достоверности данных целесообразно, чтобы n >= 20;
4) строят координатную сетку: по горизонтали – ось, на которой откладывают в соответствующем масштабе значения X; по вертикали – значения Y.
Масштабы следует подобрать таким образом, чтобы значения Хi; (i = 1, 2…., n) и значения Yi (i = 1, 2…., n) лежали в одинаковых диапазонах, т. е. точки с координатами (Х/, Y,) были заключены в некотором квадрате;
5) на координатную сетку наносят точки с координатами (Хi, Yi;) (i = 1, 2…., n), при этом возможны следующие основные варианты расположения точек (рис. 5.4):
• на рис. 5.4 а положительная корреляция (связи) между параметром X и показателем качества Y;
• на рис. 5.4 б отрицательная корреляция (связи) между параметром X и показателем качества Y;
• на рис. 5.4 в отсутствует линейная связь между параметром X и показателем Y;
• на рис. 5.4 г отсутствует линейная связь между X и Y, но есть некоторая криволинейная связь между этими характеристиками.
Следует отметить, что чем теснее линейная связь между характеристиками X и Y, тем ближе точки (Хi, Yi) концентрируются около некоторой прямой. Если между фактором X и показателем качества Y связь функциональная (т. е. не случайная), то точки (Хi, Yi) лежат строго на прямой.
Рис. 5.4
Для объективизации этого анализа рекомендуется вычислять коэффициент корреляции r, характеризующий тесноту линейной связи:
Если |г| > 1, это значит, что допущена ошибка в вычислениях, если
, то между Х и Y не выявлена линейная связь.
Если r близок K + 1, это значит, что между фактором Х и показателем Y существует положительная линейная связь, т. е. с увеличением параметра Х увеличивается показатель качества Y; если r близок K – 1, это значит, что между фактором Х и показателем Y существует отрицательная линейная связь, т. е. с увеличением параметра Х уменьшается показатель качества Y.