Шолом Анатолий
Шрифт:
Определим число упаковочных единиц, которые необходимо отобрать из первого слоя:
Таким образом, из первого, третьего и четвертого слоев необходимо отобрать по одному ящику, из второго слоя – два ящика.
Определим объем подвыборки, которую необходимо сформировать из продукции первой группы:
Этот факт обусловлен округлением при вычислении значений ni.
Рассмотренный пример показывает, что расслоение партии приводит к более сложной процедуре организации формирования выборки при одинаковых требованиях к точности и достоверности.
При сертификации по схеме № 7 (табл. 5.1) часто используется метод параметрического контроля. При параметрическом контроле, в частности надежности, у каждого проверяемого изделия (выборки изделий) определяется один количественный параметр х, который в партии изделий имеет определенное (нормальное, Вейбулла, гамма и т. д.) распределение.
В выборке объема n определяются значения параметра х1, …, хп, а также выборочная средняя величина
Оценка партии производится по величине хср, для которой (как и для доли дефектных изделий в партии при непараметрическом контроле) устанавливаются два уровня: приемочный хср a и браковочный хср в. Соотношение между хсрa и хсрв может быть различным: в случае контроля позитивных показателей хсрa > хсрв, а в случае контроля негативных показателей хсрa < хсрв.
Оценочный норматив (приемочное число) хсрс для среднего значения хср контролируемого параметра назначается с учетом следующих условий:
• если хсрa > хсрв, то параметр соответствует установленным требованиям в ТУ при xxcp0 и не соответствует при xxcp0;
• если хсрa < хср в, то параметр хср соответствует установленным требованиям в ТУ при xxcp0 и не соответствует при x xcp0.
В свою очередь параметрический статистический контроль может быть одноступенчатым или многоступенчатым.
Одноступенчатый контроль осуществляется по результатам одной выборки, а многоступенчатый – по результатам нескольких выборок. При этом каждой выборке в общем случае соответствует свой оценочный норматив (приемочный и браковочный уровень).
Многоступенчатые правила контроля более экономичны по сравнению с одноступенчатыми, но организация их вызывает большие трудности.
Параметрический одноступенчатый контроль. Такой контроль показателей безотказности – наработки до отказа (на отказ, между отказами) – осуществляется по выборочному среднему (5.4) значению T в соответствии со следующими условиями: приемки (соответствия контролируемого показателя заданным требованиям) TTc; браковки (несоответствия контролируемого показателя заданным требованиям) T Т0, где Т0 – оценочный норматив выборочного среднего значения наработки до отказа (на отказ, между отказами). В соответствии с этим риски поставщика и заказчика соответственно равны:
где Ta, Tв – уровни среднего значения наработки на отказ (до отказа, между отказами) соответственно приемочный и браковочный; v – коэффициент вариации наработки на отказ (до отказа, между отказами); m – необходимое для контроля среднего значения наработки на отказ (до отказа, между отказами) количество измерений или отказов.
План контроля (количество измерений m и оценочный норматив Т0) определяется путем решения уравнений (5.5) относительно m и Т0.
При нормальном распределении наработки до отказа (на отказ, между отказами) соотношения (5.5) принимают вид:
где F (·) – нормированная и центрированная функция нормального распределения.
С учетом зависимостей (5.6) требуемое количество измерений:
где Uр – квантиль нормального распределения, отвечающая вероятности р (табл. 5.7).
При a = в = ц соотношение (5.7) можно представить в виде:
Таблица 5.7
На основании зависимостей (5.6) получаются выражения для оценочного норматива:
при этом m определяется из соотношений (5.7) и (5.8).
Наконец, требуемый объем (суммарная наработка в процессе испытаний):
t = mT0 (5.11)
где m и T0 – величины, рассчитываемые по (5.7) – (5.10).